Xử lý tín hiệu số: Phần 2

pdf
Số trang Xử lý tín hiệu số: Phần 2 42 Cỡ tệp Xử lý tín hiệu số: Phần 2 2 MB Lượt tải Xử lý tín hiệu số: Phần 2 0 Lượt đọc Xử lý tín hiệu số: Phần 2 42
Đánh giá Xử lý tín hiệu số: Phần 2
4.6 ( 18 lượt)
Nhấn vào bên dưới để tải tài liệu
Đang xem trước 10 trên tổng 42 trang, để tải xuống xem đầy đủ hãy nhấn vào bên trên
Chủ đề liên quan

Nội dung

Chương IV Chương 4 PHÂN TÍCH TÍN HIỆU & HỆ THỐNG RỜI RẠC LTI TRONG MIỀN TẦN SỐ Trong chương III ta đã thấy phép biến đổi Z là một công cụ toán học hiệu quả trong việc phân tích hệ thống rời rạc LTI. Trong chương này, ta sẽ tìm hiểu một công cụ toán học quan trọng khác là phép biến đổi Fourier của tín hiệu rời rạc, gọi tắt là DTFT (DT-Fourier Transform). Phép biến đổi này áp dụng để phân tích cho cả tín hiệu và hệ thống. Nó được dùng trong trường hợp dãy rời rạc dài vô hạn và không tuần hoàn. Nội dung chính chương này bao gồm: - Biến đổi Fourier - Biến đổi Fourier ngược - Các tính chất của biến đổi Fourier - Phân tích tần số cho tín hiệu rời rạc (cách gọi thông dụng là phân tích phổ) - Phân tích tần số cho hệ thống rời rạc 4.1 PHÉP BIẾN ĐỔI FOURIER 4.1.1 Biểu thức tính biến đổi Fourier Ta đã biết rằng có thể biểu diễn tín hiệu rời rạc tạo ra bằng cách lấy mẫu tín hiệu tương tự dưới dạng sau đây: xs (t ) = ∞ ∑ x(kT )δ (t − kT ) k =−∞ Bây giờ ta sẽ tính biến đổi Fourier cho tín hiệu này. Các bước như sau: 1. Tính biến đổi Fourier của δ (t − kT ) . 2. Sử dụng nguyên lý xếp chồng, tìm biến đổi Fourier của xs (t ) . F xs (t ) ↔ ∞ ∑ x(nT )e − jnωT n =−∞ Đặt x(nT ) = x[n] và thay biến Ω = ωT (xem lại chương I, lưu ý đơn vị của Ω [rad] và ω [rad/s]), ta được: DTFT : X (Ω) = ∞ ∑ x[n]e − jΩn n =−∞ Ta nhận xét thấy tuy tín hiệu rời rạc trong miền thời gian nhưng DTFT lại liên tục và tuần hoàn trong miền tần số. - 67 - Chương IV DTFT chính là hàm phức theo biến tần số thực. Ta gọi DTFT là phổ phức (complex spectrum) hay ngắn gọn là phổ của tín hiệu rời rạc x[n] 4.1.2 Sự hội tụ của phép biến đổi Fourier Không phải là tất cả DTFT đều tồn tại (hội tụ) vì DTFT chỉ hội tụ khi: ∞ ∑ x[n]e − jΩn <∞ n = −∞ Ta luôn luôn có: ∞ ∑ x[n ]e − jΩn ≤ ∞ ∑ x[n ]e n = −∞ n = −∞ ∞ ∞ ∑ x[n ]e − jΩn ≤ ∑ x[n ] e n = −∞ n = −∞ ∞ ∞ ∑ x[n ]e − jΩn ≤ n = −∞ − jΩn ∑ x[n ] n = −∞ Như vậy, nếu x[n] thỏa điều kiện: ∞ ∑ x[n] < ∞ n = −∞ thì biến đổi Fourier hội tụ. Ví dụ: Tìm X (Ω) với x[n] = a n u[n] , | a |< 1 . Nếu | a |> 1 ? Ví dụ: Tìm Y (Ω) với y[n] = a nu[− n] , | a |> 1 . Nếu | a |< 1 ? - 68 - − jΩn Chương IV Ví dụ: Cho p[n] = u[n] − u[n − N ] . Tìm P (Ω) . Hãy chứng tỏ rằng biến đổi Fourier này có pha tuyến tính (linear phase) Ví dụ: Tìm H (Ω) của hệ LTI có đáp ứng xung sau h[n] = δ [n] + 2δ [n − 1] + 2δ [n − 2] + δ [n − 3] Và chứng tỏ rằng hệ có pha tuyến tính 4.1.4 Quan hệ giữa biến đổi Z và biến đổi Fourier Biểu thức tính ZT là: X(z) = ∞ ∑ x[n]z −n n = −∞ Giả sử ROC có chứa đường tròn đơn vị. Tính X(z) trên đường tròn đơn vị, ta được: X(z) z =e jΩ = ∞ ∑ x[n]e − jΩn = X (Ω) n = −∞ Như vậy, biến đổi Fourier chính là biến đổi Z tính trên đường tròn đơn vị. Dựa vào đây, ta có thể phát biểu lại điều kiện tồn tại của DTFT như sau: - 69 - Chương IV Biến đổi Fourier của một tín hiệu chỉ tồn tại khi ROC của biến đổi Z của tín hiệu đó có chứa đường tròn đơn vị. Ví dụ: Làm lại các ví dụ trên- Tìm biến đổi Fourier của: (a) x[n] = a n u[n] , | a |< 1 . Nếu | a |> 1 ? (b) y[n] = a nu[− n] , | a |> 1 . Nếu | a |< 1 ? (c) p[n] = u[n] − u[n − N ] (d) h[n] = δ [n] + 2δ [n − 1] + 2δ [n − 2] + δ [n − 3] 4.2 PHÉP BIẾN ĐỔI FOURIER NGƯỢC 4.2.1 Biểu thức tính biến đổi Fourier ngược Ta thấy X(Ω) là một hàm tuần hoàn với chu kỳ 2π , do e jΩ tuần hoàn với chu kỳ 2π : e jΩ = e j ( Ω+ 2π ) = e jΩ e j 2π = e jΩ . Do đó dải tần số của tín hiệu rời rạc là một dải tần bất kỳ rộng 2π , thường chọn là: (−π, π) hay (0,2π) . Vậy ta có thể khai triển X(Ω) thành chỗi Fourier trong khoảng (−π, π) hay (0,2π) nếu điều kiện tồn tại X(Ω) thỏa mãn. Các hệ số Fourier là x[n], ta có thể tính được x[n] từ X(Ω) theo cách sau: 1 jΩl e rồi lấy tích phân trong khoảng (− π, π) ta có: 2π π π ∞ ⎡ 1 π jΩ ( l − n ) ⎤ 1 1 ⎡ ∞ − jΩn ⎤ jΩl jΩl X ( Ω ) e d Ω = x [ n ] e e d Ω = x [ n ] ∑ ∑ ⎢ 2π ∫ e dΩ⎥ = x[l] ⎥ 2π −∫π 2π −∫π⎢⎣ n =−∞ n = −∞ ⎦ ⎣ −π ⎦ Nhân 2 vế của biểu thức tính DTFT với Thay l = n và thay cận tích phân, không nhất thiết phải là (− π, π) mà chỉ cần khoảng cách giữa cận trên và dưới là 2π , ta được biểu thức tính biến đổi Fourier ngược (IDTFT) như sau: - 70 - Chương IV x[n] = 1 2π ∫ π X (Ω )e 2 jΩn dΩ Ta có thể tính IDTFT bằng hai cách: một là tính trực tiếp tích phân trên, hai là chuyển về biến đổi Z rồi tính như tính biến đổi Z ngược. Tùy vào từng trường hợp cụ thể mà ta chọn phương pháp nào cho thuận tiện. 4.2.2 Một số ví dụ tính biến đổi Fourier ngược Ví dụ: Tìm x[n] nếu biết: ⎧⎪1, Ω ≤ Ω c X (Ω) = ⎨ ⎪⎩0, Ω c < Ω < π Ví dụ: Tìm x[n] nếu biết: X(Ω) = cos 2 Ω - 71 - Chương IV 4.3 CÁC TÍNH CHẤT CỦA PHÉP BIẾN ĐỔI FOURIER Sau đây ta sẽ xét một số tính chất quan trọng của DTFT, phần còn lại xem sách. 4.3.1 Tính tuyến tính ax1[n] + bx2 [n] ←→ aX 1 (Ω) + bX 2 (Ω) 4.3.2 Tính dịch thời gian x[n] ←→ X (Ω) x[n − n0 ] ←→ e − jΩn0 X (Ω) Qua đây ta thấy sự dịch chuyển tín hiệu trong miền thời gian sẽ không ảnh hưởng đến biên độ của DTFT, tuy nhiên pha được cộng thêm một lượng. 4.3.3 Tính dịch tần số/ điều chế x[n] ←→ X (Ω) e jΩ0n x[n ] ←→ X(Ω − Ω 0 ) cos(Ω 0 n ) x[n ] ←→ 1 1 X (Ω − Ω 0 ) + X (Ω + Ω 0 ) 2 2 Như vậy, việc điều chế tín hiệu gây ra sự dịch tần số. - 72 - Chương IV 4.3.4 Tính chập thời gian Tương tự như biến đổi Z, với biến đổi Fourier ta cũng có: F x1[n] ∗ x2 [n] ←→ X 1 (Ω) X 2 (Ω) Ví dụ: Cho h[n] = a nu[n],| a |< 1 . Tìm hệ đảo của nó hi [n] , nhưng không dùng biến đổi Z. 4.3.5 Tính nhân thời gian x 1 [n ].x 2 [n ] ←→ 1 X 1 (λ)X 2 (Ω − λ)dλ 2π ∫2 π 4.4 PHÂN TÍCH TẦN SỐ (PHỔ) CHO TÍN HIỆU RỜI RẠC 4.4.1 Ý nghĩa của phổ Trong miền tần số, mỗi tín hiệu đều có đặc điểm riêng của nó. Ví dụ như, tín hiệu sin chỉ có duy nhất một tần số đơn, trong khi nhiễu trắng chứa tất cả các thành phần tần số. Sự biến thiên chậm của tín hiệu là do tần số thấp, trong khi sự biến thiên nhanh và những sườn nhọn là do tần số cao. Như xung vuông chẳng hạn, nó chứa cả tần số thấp và cả tần số cao. Hình sau minh họa cho điều đó. Hình (a) là một sóng sin tần số thấp, các hình sau (b)-(c) cộng thêm dần các sóng sin tần số cao dần. Hình cuối cùng (e) là tổng của 7 sóng sin. Trong hình (e) ta thấy tổng của 7 sóng sin có dạng xấp xỉ với dạng của một xung vuông. Phổ của tín hiệu là mô tả chi tiết các thành phần tần số chứa bên trong tín hiệu. Ví dụ như với tín hiệu xung vuông vừa nói trên, phổ của nó chỉ ra tất cả các đỉnh nhọn của các sóng sin riêng có thể kết hợp lại với nhau tạo ra xung vuông. Thông tin này quan trọng vì nhiều lý do. Ví dụ như, thành phần tần số trong một mẩu nhạc chỉ cho ta biết các đặc trưng của loa, để từ đó khi sản xuất lại ta có thể cải tiến cho hay hơn. Một ví dụ khác, micro trong hệ thống nhận dạng tiếng nói phải có dải tần đủ rộng để có thể bắt được tất cả các tần số quan trọng trong tiếng nói đầu vào. Để dự đoán các ảnh hưởng của bộ lọc trên tín hiệu, cần phải biết không chỉ bản chất của bộ lọc mà còn phải biết cả phổ của tín hiệu nữa. - 73 - Chương IV 4.4.2 Phổ biên độ và phổ pha Phổ của tín hiệu gồm có hai phần: phổ biên độ (magnitude spectrum) và phổ pha (phase spectrum). Phổ biên độ chỉ ra độ lớn của từng hành phần tần số. Phổ pha chỉ ra quan hệ pha giữa các thành phần tần số khác nhau. Trong phần này, ta xét tín hiệu rời rạc không tuần hoàn. Công cụ để tính phổ tín hiệu rời rạc không tuần hoàn là DTFT. Để tính phổ tín hiệu, ta qua hai bước: một là tính DTFT của tín hiệu- là X(Ω) , hai là tính biên độ và pha của X(Ω) : X ( Ω ) = X ( Ω ) e jθ ( Ω ) ở đây | X(Ω) | là phổ biên độ và θ(Ω) là phổ pha. Ta dễ dàng chứng minh được rằng đối với tín hiệu thực, phổ biên độ là một hàm chẵn theo tần số Ω và phổ pha là một hàm lẻ theo Ω . Do đó, nếu biết phổ X(Ω) trong khoảng 0 đến π , ta có thể suy ra phổ trong toàn dải tần số. - 74 - Chương IV Để dễ giải thích phổ, tần số số Ω từ 0 đến π thường được chuyển đổi thành tần số tương tự f từ 0 đến fS/2 nếu tần số lấy mẫu là fS. Ví dụ: Tìm phổ biên độ và phổ pha của tín hiệu chữ nhật: x[n] = u[n] - u[n-4] Ví dụ: Một mẩu nguyên âm tiếng nói “eee” được lấy mẫu ở tần số 8 kHz. Phổ biên độ của tín hiệu này như trên hình. Hỏi tần số cơ bản của tín hiệu này là bao nhiêu? - 75 - Chương IV 4.4.3 Mật độ phổ năng lượng Năng lượng của tín hiệu x[n] được định nghĩa là: ∞ ∑ | x[n ] | E= 2 n = −∞ Bây giờ ta biểu diễn năng lượng theo phổ: ⎡1 π * ⎤ − jΩn E = ∑ x[n ]x [n ] = ∑ x[n ]⎢ Ω Ω X ( ) e d ⎥ ∫ n = −∞ n = −∞ ⎣ 2π − π ⎦ ∞ ∞ * Thay đổi thứ tự lấy tổng và tích phân, ta có: π π 1 1 ⎡ ∞ ⎤ 2 * E= X ( ) x[n ]e − jΩn ⎥dΩ = Ω X ( Ω ) dΩ ∑ ⎢ ∫ ∫ 2π − π 2π − π ⎣ n = −∞ ⎦ Vậy quan hệ về năng lượng giữa x[n] và X(Ω) là: E= ∞ ∑ | x[n ] |2 = n = −∞ π 1 2 X(Ω) dΩ (quan hệ Parseval) ∫ 2π − π 2 Đại lượng S xx (Ω) = X(Ω) gọi là mật độ phổ năng lượng. Ví dụ: Xác định mật độ phổ năng lượng của tín hiệu sau: x[n] = an u[n] với -1 < a < 1 4.4.4 Băng thông Băng thông (bandwidth) là dải tần số tập trung hầu hết năng lượng (công suất) của tín hiệu. Giả sử 95% năng lượng của tín hiệu tập trung trong dải tần số F1 ≤ F ≤ F2 , ta nói băng thông 95% của tín hiệu là F2 − F1 . Ta có thể định nghĩa các băng thông 75%, băng thông 90%, băng thông 99%... theo kiểu tương tự như băng thông 95% nói trên. Dựa vào băng thông của tín hiệu, ta có thể phân loại tín hiệu như sau: Nếu năng lượng tín hiệu tập trung quanh tần số 0 thì đó là tín hiệu tần số thấp (low-frequency signal). Nếu năng lượng tín hiệu tập trung ở miền tần số cao thì đó là tín hiệu cao tần (highfrequency signal). - 76 -
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.