Wind and Solar Power Systems

pdf
Số trang Wind and Solar Power Systems 473 Cỡ tệp Wind and Solar Power Systems 6 MB Lượt tải Wind and Solar Power Systems 3 Lượt đọc Wind and Solar Power Systems 63
Đánh giá Wind and Solar Power Systems
4.3 ( 16 lượt)
Nhấn vào bên dưới để tải tài liệu
Đang xem trước 10 trên tổng 473 trang, để tải xuống xem đầy đủ hãy nhấn vào bên trên
Chủ đề liên quan

Nội dung

Wind and Solar Power Systems Design, Analysis, and Operation Second Edition 1570_book.fm copy Page ii Wednesday, June 15, 2005 10:02 AM Wind and Solar Power Systems Design, Analysis, and Operation Second Edition Mukund R. Patel U.S. Merchant Marine Academy Kings Point, New York, U.S.A. Boca Raton London New York Singapore A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc. Cover photo: Original land use continues in a wind farm in Germany. (With permission from Vestas Wind Systems, Denmark.) The wind and photovoltaic power technologies are rapidly evolving. Although reasonable care has been taken in preparing this book, neither the author nor the publisher assumes responsibility for any consequences of using the information. The diagrams disclosed herein are for illustration purposes only and may be covered by patents. Published in 2006 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-1570-0 (Hardcover) International Standard Book Number-13: 978-0-8493-1570-1 (Hardcover) Library of Congress Card Number 2005043904 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Patel, Mukund R., 1942Wind and solar power systems : design, analysis, and operation / Mukund R. Patel.--2nd ed. p. cm. Includes bibliographical references and index. ISBN 0-8493-1570-0 (alk. paper) 1. Wind power plants. 2. Solar power plants. 3. Photovoltaic power systems. I. Title. TK1541.P38 2005 621.31'2136--dc22 2005043904 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com Taylor & Francis Group is the Academic Division of T&F Informa plc. and the CRC Press Web site at http://www.crcpress.com Dedication Dedicated to my mother, Shakariba, who practiced ingenuity, and to my children, Ketan, Bina, and Vijal, who flattered me by becoming engineers. Preface The phenomenal growth and new developments in wind and solar power technologies have made the second edition of this book necessary. It reflects the need for an expanded, revised, and updated version of the well-received first edition in just 5 years. During that time, the capital and energy costs of wind power have declined by 20%. Today, the cost of electricity from grid-connected wind farms is below 4 cents/kWh, and that from photovoltaic (PV) parks below 20 cents/kWh. The goal of ongoing research programs funded by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) is to bring wind energy cost below 3 cents/kWh and the PV energy cost below 15 cents/kWh by 2010. In capital and energy costs, wind now competes on its merits with the conventional power technologies, and has become the least expensive source of electrical power — traditional or new — in many parts of the world. It is also abundant and environmentally clean, bringing many indirect social benefits not fully reflected in the market economics. For these reasons, wind power now finds importance in the energy planning in all countries around the world. According to the DOE, prime wind locales of the world have the potential of supplying more than ten times the global energy needs. In the U.S., the DOE has established 21 partnerships with public and private bodies to develop turbines to generate economical power in low-wind-speed regions that would open up much larger areas of the country for rapid development of wind power. The Electric Power Research Institute (EPRI) estimates that wind energy will grow from less than 1% at present to as much as 10% of the U.S. electricity demand by 2020. Around the world, the wind power generation capacity has seen an average annual growth rate of 30% during the period from 1993 to 2003. More than 8,000 MW of new wind capacity was added globally in 2003 with an investment value of $9 billion. This brought the total cumulative wind capacity to 40,000 MW. The most explosive growth occurred in Germany. Offshore wind farms are bringing a new dimension to the energy market. Many have been installed, and many more, each exceeding 300-MW capacity, are being installed or are in the planning stage. Most offshore farms are less than 10 km from the shore in less than 10 m depth of water. Denmark’s plan to install 750 MW of new wind capacity by 2008, bringing its total to 4,000 MW for supplying 25% of the country’s electricity, includes aggressive offshore plans. U.S. wind capacity is projected to reach 12,000 MW by 2015. Utilities and wind power developers have announced plans for more than 5,000 MW of new capacity in 15 states by 2006. Hydro-Quebec plans 1,000 MW of new capacity to be added between 2006 and 2012. In these new installations, 3-MW turbines are being routinely installed in many countries, with 5-MW machines available today for large offshore farms; 7-MW units are in prototype tests. On the solar PV side, the cost of PV electricity is still high: between 15 and 25 cents/kWh. With the consumer cost of utility power ranging from 10 to 15 cents/kWh, PV cannot economically compete directly with utility power as yet, except in remote markets where utility power is not available and transmission line cost would be prohibitive. Many developing countries have large areas falling in this category, and that is where the most PV growth is taking place, such as in India and China. The worldwide solar PV is about $7 billion in annual business, mainly driven by Germany. Worldwide, PV installations grew at an average annual rate of 25 to 30% during the period from 2000 to 2004. By the end of 2004, the cumulative PV capacity was 2,030 MW, with 1,000 MW in the U.S. The annual production of PV modules was 530 MW in 2004 and is projected to reach 1,600 MW by 2010. The present module prices are $6 to $7 per watt for 1-kW modules and $3 to $4 per watt for 1-MW plants. The emerging thin-film and concentrating PV cells are expected to reduce the module prices substantially in the near future. After the restructuring of U.S. electrical utilities as mandated by the Energy Policy Act (EPAct) of 1992, industry leaders expected the power generation business, both conventional and renewable, to become more profitable in the long run. Their reasoning is that the generation business has been stripped of regulated prices and opened to competition among electricity producers and resellers. The transmission and distribution business, on the other hand, is still regulated. The American experience indicates that free business generates more profits than regulated business. Such is the experience in the U.K. and Chile, where the electrical power industry had long been structured similarly to the U.S. EPAct of 1992. Moreover, the renewable power price would be falling as the technology advances, whereas the price of the conventional power would rise with inflation, making the wind and PV even more profitable in the future. North America’s darkest blackout in 2003 with its estimated $10 billion in damage is bringing a new and sharp focus to distributed power generation. Because overloaded transmission lines caused the blackout, and it would take decades before new lines can be planned and built, the blackout has created a window of opportunity for distributed power generation from wind and PV. As most large-scale wind farms are connected to the grid lines, PV systems are expected to benefit more in distributed power generation growth. The Author Mukund R. Patel, Ph.D., P.E., is a research engineer, consultant, and educator with 40 years of hands-on involvement in designing and developing state-of-the-art electrical power equipment and systems. He has served as principal engineer at the General Electric Company in Valley Forge, Pennsylvania; fellow engineer at the Westinghouse Research & Development Center in Pittsburgh; senior staff engineer at Lockheed Martin Corporation in Princeton, New Jersey; development manager at Bharat Bijlee Limited, in Bombay, and as 3M Distinguished Visiting Professor at the University of Minnesota, Duluth. Presently, he is a professor of engineering at the U.S. Merchant Marine Academy at Kings Point, New York, and an associate editor of Solar Energy Journal published by the International Solar Energy Society. Dr. Patel obtained his Ph.D. degree in electric power engineering from Rensselaer Polytechnic Institute, Troy, New York; M.S. in engineering management from the University of Pittsburgh; M.E. in electrical machine design from Gujarat University; and B.E. from Sardar Patel University, Vallabha Vidyanagar, Gujarat, India. He is a fellow of the Institution of Mechanical Engineers (U.K.), associate fellow of the American Institute of Aeronautics and Astronautics, a senior member of the IEEE, a registered professional engineer in Pennsylvania, and a member of Eta Kappa Nu, Tau Beta Pi, Sigma Xi, and Omega Rho. Dr. Patel has presented and published about 50 papers at national and international conferences, holds several patents, and has earned recognition from the National Aeronautics and Space Administration for exceptional contribution to the photovoltaic power system design for the Upper Atmosphere Research Satellite. He is active in consulting and teaching short courses to professional engineers in the electrical power industry. Dr. Patel lives in Yardley, Pennsylvania, with his wife, Sarla. They have three children, Ketan, Bina, and Vijal, and two grandchildren, Rayna and Dhruv. Dr. Patel can be reached at patelm@usmma.edu.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.