Đồ án tốt nghiệp - Phân tích thiết kế hệ thống - THIẾT KẾ BỘ PID SỐ ĐIỀU KHIỂN TỐC ĐỘ ĐỘNG CƠ DC

pdf
Số trang Đồ án tốt nghiệp - Phân tích thiết kế hệ thống - THIẾT KẾ BỘ PID SỐ ĐIỀU KHIỂN TỐC ĐỘ ĐỘNG CƠ DC 66 Cỡ tệp Đồ án tốt nghiệp - Phân tích thiết kế hệ thống - THIẾT KẾ BỘ PID SỐ ĐIỀU KHIỂN TỐC ĐỘ ĐỘNG CƠ DC 1 MB Lượt tải Đồ án tốt nghiệp - Phân tích thiết kế hệ thống - THIẾT KẾ BỘ PID SỐ ĐIỀU KHIỂN TỐC ĐỘ ĐỘNG CƠ DC 5 Lượt đọc Đồ án tốt nghiệp - Phân tích thiết kế hệ thống - THIẾT KẾ BỘ PID SỐ ĐIỀU KHIỂN TỐC ĐỘ ĐỘNG CƠ DC 52
Đánh giá Đồ án tốt nghiệp - Phân tích thiết kế hệ thống - THIẾT KẾ BỘ PID SỐ ĐIỀU KHIỂN TỐC ĐỘ ĐỘNG CƠ DC
4.1 ( 4 lượt)
Nhấn vào bên dưới để tải tài liệu
Đang xem trước 10 trên tổng 66 trang, để tải xuống xem đầy đủ hãy nhấn vào bên trên
Chủ đề liên quan

Nội dung

ĐỒ ÁN ĐIỆN TỬ ỨNG DỤNG ĐỂ TÀI: THIẾT KẾ BỘ PID SỐ ĐIỀU KHIỂN TỐC ĐỘ ĐỘNG CƠ DC nguyen dinh tuan HOME Trang -2- PHẦN 1: LÝ THUYẾT ......................... 3 CHƯƠNG 1: ĐỘNG CƠ ĐIỆN MỘT CHIỀU................................................... 3 1.1 Giới thiệu động cơ DC: .............................................................................. 3 1.2 Mô hình hóa động cơ DC:.......................................................................... 3 1.3 Phương pháp điều khiển tốc độ động cơ:.................................................. 4 1.4 Khảo sát hàm truyền: ................................................................................ 5 1.4.1 Hàm truyền lý tưởng:.......................................................................... 5 1.4.2 Hàm truyền gần đúng tìm được bằng thực nghiệm:.......................... 6 1.5 Phương pháp ổn định tốc độ động cơ dùng PID:...................................... 7 1.5.1 Thuật toán PID: .................................................................................. 7 1.5.2 Phương pháp hiệu chỉnh thông số bộ PID Ziegler-Nichols: .............. 9 Chương 2 TỔNG QUAN VỀ PSoC IC CỦA HÃNG CYPRESS ......................10 2.1. Giới thiệu: ................................................................................................10 2.2. Giới thiệu IC khả trình PSoC của hãng CYPRESS................................10 2.2.1 Khái niệm PSoC .................................................................................10 2.2.2 Tổng quan về tài nguyên chip PSoC ..................................................10 2.2.3 Cấu trúc chi tiết bên trong chip PSoC...............................................13 3.3 Giới thiệu phần mềm PSoC Designer của hãng CYPRESS ....................27 3.3.1 Tổng quan về PSoC Designer ............................................................27 3.3.2 Xây dựng kiến trúc phần cứng( Device Editor) ................................27 3.3.3 Cửa sổ viết ứng dụng(Application Editor) ........................................36 CHƯƠNG 3: LÝ THUYẾT VỀ MOSFET ........................................................38 3.1 Giới thiệu về MOSFET .............................................................................38 3.2 Cấu trúc cơ bản của NMOS kiểu tăng cường : .......................................38 3.3 Ưu nhược điểm và các thông số quan trọng của MOSFET: ...................40 3.3.1 Những ưu điểm của mosfet : ..............................................................40 3.3.2 Các nhược điểm của mosfet. ..............................................................40 3.3.3 Các thông số quan trọng của mosfet : ...............................................40 PHẦN 2: THIẾT KẾ VÀ THI CÔNG 43 CHƯƠNG 4: THIẾT KẾ VÀ THI CÔNG PHẦN CỨNG ............................43 4.1 Sơ đồ nguyên lý: ........................................................................................43 4.2 Tính toán các thông số của mạch: ............................................................44 4.2.1. Mạch đảo chiều động cơ: ..................................................................44 4.2.2 Tính toán cho FET: ............................................................................45 4.2.3 Tính toán mạch Driver cho MOSFET: .............................................47 4.3 Tính toán các tham số của bộ điều khiển PID số: ....................................49 5.1 Cấu hình bên trong PSOC:.......................................................................52 5.2 Giải thuật phần mềm: ...............................................................................57 Trang -3- PHẦN 1: LÝ THUYẾT CHƯƠNG 1: ĐỘNG CƠ ĐIỆN MỘT CHIỀU 1.1 Giới thiệu động cơ DC: Động cơ điện một chiều là động cơ điện hoạt động với dòng điện một chiều. Động cơ điện một chiều ứng dụng rộng rãi trong các ứng dụng dân dụng cũng như công nghiệp Cấu tạo của động cơ gồm có 2 phần: stato đứng yên và rôto quay so với stato. Phần cảm (phần kích từ-thường đặt trên stato) tạo ra từ trường đi trong mạch từ, xuyên qua các vòng dây quấn của phần ứng (thường đặt trên rôto). Khi có dòng điện chạy trong mạch phần ứng, các thanh dẫn phần ứng sẽ chịu tác động bởi các lực điện từ theo phương tiếp tuyến với mặt trụ rôto, làm cho rôto quay. Tùy theo cách mắc cuộn dây roto và stato mà người ta có các loại động cơ sau: - Động cơ kích từ độc lập: Cuộn dây kích từ (cuộn dây stato) và cuộn dây phần ứng (roto) mắc riêng rẽ nhau, có thể cấp nguồn riêng biệt. - Động cơ kích từ nối tiếp: Cuộn dây kích từ mắc nối tiếp với cuộn dây phần ứng: Đối với loaj động cơ kích từ độc lập, người ta có thể thay thế cuộn dây kích từ bởi nam châm vỉnh cữu, khi đó ta có loại động cơ điện 1 chiều dùng nam châm vĩnh cữu. Đây là loại động cơ được sử dụng trong đồ án này. 1.2 Mô hình hóa động cơ DC: Mô hình tương đương của phần ứng động cơ như sau: Trang Ia Ra La 1 Ua + A Eg 2 - u a  R a i a  La dia e g dt e g  k v n (1.1) (1.2) Trong đó Φ là từ thông do nam châm vĩnh cữu gây ra. n là tốc độ động cơ. Momen điện từ: Td = Kt Φia (1.3) Phương trình của động cơ: Td  J d  B  TL dt (1.4) B: hệ số ma sát T: monen tải. Ở chế độ xác lập: u a  Ra ia e g (1.5) Td  2nB  TL  K t ia (1.6) Ta có được tốc độ động cơ ở chế độ xác lập: n U a  I a Ra Kv (1.7) 1.3 Phương pháp điều khiển tốc độ động cơ: Đối với loại động cơ kích từ độc lập dùng nam châm vĩnh cữu, để thay đổi tốc độ, ta thay đổi điện áp cung cấp cho roto. Việc cấp áp 1 chiều -4- Trang -5- thay đổi thường khó khăn, do vậy người ta dùng phương pháp điều xung (PWM): Hình 1.1: PWM Phương pháp điều xung sẽ giữ tần số không đổi, thay đổi chu kì nhiệm vụ (Duty cycle) để thay đổi điện áp trung bình đặt lên động cơ. Điện áp trung bình: Vdk  Ton Vin T Do đặc tính cảm kháng của động cơ, dòng qua động cơ là dòng liên tục, gợn sóng như sau: Udk t Ia t Hình 1.2: Dạng sóng dòng và áp trên động cơ. 1.4 Khảo sát hàm truyền: 1.4.1 Hàm truyền lý tưởng: Biến đổi Laplace các công thức từ (1.1) – (1.4 ) ta được: Trang U a ( p )  Ra I a ( p )  pLa I a ( p )  E g (a ) (1.9) E g ( p )  k v n( p ) (1.10) Td(p) = Kt ΦIa(p) (1.11) Td ( p )  2pJn( p )  2Bn( p )  TL ( p) (1.12) -6- Từ 1.12 tính được: n( p )  Td ( p)  TL ( p ) 2B( p m  1) I a ( p)  Trong đó: (1.13) U a ( p)  E a ( p) Ra ( a p  1) (1.14)  a =La/Ra Hằng số thời gian của mạch phần ứng  m =J/B Hằng số thời gian cơ. Vậy ta có mô hình hệ thống như sau: Ia(p) Ua(p) Td(p) 1 Ra ( a p  1) TL(p) kt  1 2B( m p  1) Eg(p ) kv  Hình 1.3: Mô hình động cơ điện DC Khi momen tải không đổi, ta có: n( p )  U a ( p ) 1 2BRa ( a p  1)( m p  1)  K v  Kt  Vậy hàm truyền của động cơ lúc này có dạng khâu dao động. 1.4.2 Hàm truyền gần đúng tìm được bằng thực nghiệm: Để tìm hàm truyền bằng thực nghiệm ta tìm đáp ứng xung của động cơ. Ta đặt áp bằng áp định mức vào động cơ và vẽ đồ thị vận tốc theo thời gian. Vì thời gian lấy mẫu vận tốc nhỏ do đó ta không thấy được các điểm uốn của đồ thị, do đó ở đây ta xấp xỉ hàm truyền động cơ là khâu quán tính bậc 1 có dạng như sau. n(p) Trang G k Tp  1 Đáp ứng xung của động cơ: n(p)= kU (Tp  1) p Biến đổi Laplace ngược ta được: n=kU(1-e-t/T) Khi t = T, n = kU(1-e-1)=0.63kU=0.63nmax Vậy trên đồ thị ta xác định điểm tại đó n=0.63nmax sau đó tìm được T Dựa vào đồ thị tìm được bằng thực nghiệm ta tìm được các thông số kU và T kU = 150 vòng/s T = 30ms=0.03s Vậy hàm truyền gần đúng: G k 150 / 24 37.5   Tp  1 0.03 p  1 0.03 p  1 1.5 Phương pháp ổn định tốc độ động cơ dùng PID: 1.5.1 Thuật toán PID: G  K p  K i  e( )d  K d de( ) d Trong đó: - Kp: Hệ số khâu tỉ lệ (khâu khuếch đại) -7- Trang -8- - Ki: Hệ số tích phân - Kd: hệ số vi phân Luật điều khiển PID: Dựa vào bảng trên ta thấy rằng luật tỉ lệ (P) có đặc điểm tác động nhanh nhưng không triệt tiêu được sai lệch, đồng thời làm vọt lố của hệ thống tăng. Khâu tích phân cho phép triệt tiêu sai lệch nhưng tác động chậm. Khâu vi phân phản ứng với tốc độ biến thiên của sai lệch. Ta cần xác định các thông số Kp, Ki, Kd để được hệ thống có chất lượng mong muốn. Thuật toán của bộ điều khiển PID số: Khâu tỉ lệ P (Proportional): GP(z) = KP Khâu tích phân I (Integrate): 1 GI ( z )  K I T 1  z 1 kT với k  e(t )dt   Te(nT ) 0 n 0 Trong đó T là chu kì lấy mẫu vận tốc. Công thức tích phân gần đúng theo thuật toán xấp xỉ hình chữ nhật tới. Khâu vi phân D (Derivative): Trang GD ( z )  K D -9- z 1  K d (1  z 1 ) với thành phần vi phân xấp xỉ bởi: Tz de(t ) e(nT )  e((n  1)T )  dt T Vậy ta được hàm truyền khâu PID rời rạc: G U dk ( z ) 1  K p  Ki  K d (1  z 1 ) 1 E ( z) 1 z Udk(z)(1-z-1) = E(z)(Kp(1-z-1) + Ki + Kd(1-z-1)2 Suy ra: uk – uk-1 = Kp(ek – ek-1) + Kiek + Kd(ek – 2ek-1 – ek-2) 1.5.2 Phương pháp hiệu chỉnh thông số bộ PID Ziegler-Nichols: Thông thường việc chọn các thông số P, I, D được xác định bằng thực nghiệm dựa vào đáp ứng xung của hệ thống. Ziegler – Nichols đưa ra phương pháp chọn tham số PID cho mô hình quán tính bậc nhất có trễ. Ở đây ta xấp xỉ hàm truyền của động cơ để dùng phương pháp này, tuy không hoàn toàn chính xác nhưng có thể cho đáp ứng tương đối tốt. Phương pháp này đỏi hỏi phải tính được giá trị giới hạn của của khâu tỉ lệ Kgh và chu kì giới hạn của hệ kín Tgh. Sau đó tìm các thông số khác theo bảng sau: Để tìm được Kgh và Tgh, ban đầu ta chỉnh Ki, Kd bằng 0 sau đó tăng từ từ Kp để hệ thống ở biên giới ổn định (dao động với biên độ và chu kì không đổi), tại đây ta xác định được Kgh và Tgh sau đó tính các thông số khác tùy theo bộ điều khiển như bảng trên. Ki = Kp/Ti Kd = KxTd Để thuận tiện trong quá trình điều chỉnh và quan sát đáp ứng của động cơ, trong đồ án này chúng tôi đã xây dựng chương trình viết bằng VB trên máy tính để giao tiếp với mạch điều khiển. Trang - 10 - Chương 2 TỔNG QUAN VỀ PSoC IC CỦA HÃNG CYPRESS 2.1. Giới thiệu: Trong chương này sẽ giới thiệu chi tiết chip PSoC của hãng CYPRESS gồm các nội dung như sau:  Trình bày kiến trúc bên trong chip PSoC: Tổng quan về tài nguyên chip, chi tiết kiến trúc bên trong của một chip PSoC.  Giới thiệu phần mềm thết kế PSoC Designer dành cho chip PSoC của hãng CYPRESS, phương pháp lập trình phần cứng (Device Editor) và lập trình ứng dụng (Application Editor). Đồng thời giới thiệu tất cả các module (embedded cores) trong thư viện API mà hãng này hỗ trợ. 2.2. Giới thiệu IC khả trình PSoC của hãng CYPRESS 2.2.1 Khái niệm PSoC PSoC hay PSoC Mixed-Signal Arrays là từ viết tắt của Programmable system-on-chips. PSoC là chip mà có thể tích hợp cả vi điều khiển các thành phần tương tự và thành phần số xung quanh vi điều khiển nhúng vào một hệ thống. Một chip đơn PSoC có thể tích hợp lên đến 100 chức năng ngoại vi với 1 vi điều khiển, làm giảm thời gian thiết kế, không gian board, năng lượng tiêu hao và giảm 5% giá thành sản phẩm ít nhất 10$ cho mỗi hệ thống. 2.2.2 Tổng quan về tài nguyên chip PSoC PSoC khác với các vi điều khiển 8 bit thông thường là có các khối số và các khối tương tự có thể lập trình được cho phép thực hiện nhiều giao tiếp ngoại vi. Khối số gồm có nhiều khối khả trình nhỏ có thể được cấu hình cho các ứng dụng khác nhau. Khối tương tự được sử dụng cho các công cụ Analog như bộ lọc, bộ so sánh tín hiệu tương tự, các bộ khuyếch đại đảo, không đảo như AD, DA. Có một số họ PSoC khác nhau mà ta có thể lựa chọn xây dựng cho phù hợp với yêu cầu dự án. Điểm khác nhau giữa cá họ PSoC là số lượng các khối
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.