Breeding for earliness and seed yield in summer sesame (Sesamum indicum L.) over environments

pdf
Số trang Breeding for earliness and seed yield in summer sesame (Sesamum indicum L.) over environments 14 Cỡ tệp Breeding for earliness and seed yield in summer sesame (Sesamum indicum L.) over environments 1 MB Lượt tải Breeding for earliness and seed yield in summer sesame (Sesamum indicum L.) over environments 0 Lượt đọc Breeding for earliness and seed yield in summer sesame (Sesamum indicum L.) over environments 1
Đánh giá Breeding for earliness and seed yield in summer sesame (Sesamum indicum L.) over environments
4.1 ( 14 lượt)
Nhấn vào bên dưới để tải tài liệu
Đang xem trước 10 trên tổng 14 trang, để tải xuống xem đầy đủ hãy nhấn vào bên trên
Chủ đề liên quan

Nội dung

Int.J.Curr.Microbiol.App.Sci (2018) 7(10): 1523-1536 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 10 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.710.170 Breeding for Earliness and Seed Yield in Summer Sesame (Sesamum indicum L.) Over Environments R.S. Parmar1*, V.P. Chovatia2, G.K. Sapara3 and J.C. Dhingani3 1 College of Agriculture, Junagadh Agricultural University, Motabhandariya (Amreli)-355610, Gujarat, India 2 Director of Research and P.G. Studies, Junagadh Agricultural University, Junagadh, Gujarat, India 3 Main Oilseeds Research Station, JAU, Junagadh, Gujarat, India *Corresponding author ABSTRACT Keywords Sesame, Seed yield, Earliness and heteroiss Article Info Accepted: 12 September 2018 Available Online: 10 October 2018 Sesame is an important oilseed crop not only in India also across the world. Studying nature of inheritance of sesame plant characteristics is essential for planning effective breeding programme. The present investigation was conducted at the Agricultural Research Station, J.A.U., Amreli and Department of Seed Science and Technology, College of Agriculture, Sagadividi Farm, J.A.U., Junagadh, Gujarat. These 40 hybrids along with a two checks, G.Til-2 and G.Til-3 were evaluated in a four environments were created through different time and location for sowing during summer 2016. The earliest hybrid over better parent was AT-306 x RT-54, AT-322 x RT-54, AT-307 x RT-54, AT307 x G.Til-10 and AT-253 x RT-54 in days to flowering in pooled. The crosses AT-306 x AT-285 and AT-306 x AT-285 recorded the highest desirable standard heterosis over G.Til-2 and G.Til-3 in days to maturity. The best hybrids AT-319 x AT-285, AT-322 x AT-285, AT-307 x AT-285, AT-319 x G.Til-10 and AT-306 x AT-285 exhibited significant and positive heterobeltiosis for seed yield per plant and its components. Such crosses could be exploited further for earliness and seed yield advancement in sesame through regional multilocational testing over different environments. Introduction Sesame (Sesamum indicum L.), commonly known as gingelly, til, simsim, til or tal is a member of the order Tubiflorae and family Pedaliaceae. Sesame is predominantly annual self-pollinated (85- 95%) diploid (2n=2x=26) crop. It is referred as „Queen of Oilseeds‟ due to its regard by the users and owing to its oil quality (Bedigian and Harlan, 1986). It is one of the most ancient crops in the world known to mankind, with archeological evidences dating back to 2250 and 1750 BC at Harappa in the Indus valley (Najeeb et al., 2012). Its oil was extracted by the ancient Hindus, which was used for certain ritual purposes (Weiss, 1983). Ironically, it is considered as an „orphan crop‟ due to meager research efforts attributed to the fact that it is not a mandate crop for any international crop research 1523 Int.J.Curr.Microbiol.App.Sci (2018) 7(10): 1523-1536 institute (Bhat et al., 1999). Sesame is an important annual oilseed crop in the tropics and warm subtropics. At present, Myanmar is the largest producer of sesame seed in the world followed by India, China, Ethiopia, Nigeria and Uganda. In India, during 2015-16, sesame is cultivated in an area of 17.46 lakh ha with a production of 9.11 lakh tones annually and productivity of 474 kg/ha (Anon., 2016). Being the fourth important oilseed crop in Indian agriculture after groundnut, rape seed and mustard, it is widely cultivated in the states of Uttar Pradesh, Rajasthan, Orissa, Gujarat, Andhra Pradesh, Tamil Nadu, Karnataka, West Bengal, Bihar and Assam. In Gujarat, during 2015-16, sesame is cultivated in an area of 2.56 lakh ha with a production of 1.52 lakh tones and productivity of 530 kg/ha (Anon., 2016). This crop is generally cultivated as sole or mixed crop during kharif, semi-rabi and summer season. The productivity of sesame is very low as compared to other oilseeds hence, it is necessary to raise the productivity and thereby total oilseeds production in order to meet edible oil requirement of the country. The first important step in the exploitation of heterosis is to know its magnitude and direction. The nature and magnitude of heterosis help in identifying superior cross combinations and their exploitation to get better transgressive segregants. The theory of dominant linked gene hypothesis put forward by Jones (1917) and advocated and discussed in Singh and Singh (1984) appears to be the most acceptable, both in concept and utilization of hybrid vigour in self-pollinated crops. According to them one can select a pure breeding line equally good or even better than F1 hybrid. In the present decade, considerable emphasis has been laid on the development of hybrids and high yielding varieties. For improving yield potential and to have a quantum jump in yield of varieties and hybrids, selection of right type of parents is very important. For this, the study of genetic parameters is the first requisite for better understanding of the genetic make-up of the genotypes especially in the systematic breeding programme because many times the high yielding genotypes may not combine well either to give a good cross combination or to give desirable segregants. Parents which produce good progenies on crossing are of immense use of the breeder. The necessities of testing the parents for their combining ability in turn will help in identifying the best combiners, which may be hybridized. Hybridization may aim to exploit heterosis or to accumulate fixable genes through selection in segregating generations. Thus, the knowledge of relative magnitude of additive and non-additive components of genetic variance and their exploitation to its maximum extent has become importance. The computation of relative heterosis has no genetic basis and hence not estimated. Hence, heterosis over better parent (heterobeltiosis) and heterosis over standard check G.Til-2 and G.Til-3 (standard heterosis) with significance in the desirable direction have taken into consideration for comparing the different crosses in the present investigation. The aim of heterosis estimation in the present study has to spot out the best combination of parents giving high degree of useful heterosis and characterization of parents for their genotypic worth for future use in breeding programme. The degree and magnitude of heterosis varied from cross to cross for all the characters under individual environments and in pooled analysis. Earliness characters are of paramount importance in breeding for early maturing varieties/hybrids of oilseed crops in general and sesame in particular for better adaptation to climate change (Paroda, 2013). Early maturing varieties contribute significantly to 1524 Int.J.Curr.Microbiol.App.Sci (2018) 7(10): 1523-1536 increasing productivity. Selection for maturation period can be effective using flowering period for improving uniform ripening capsule. A suitable breeding methodology and the identification of superior parents are the most important pre-requisites for the development of early maturing and high yielding genotypes. For genetic improvement of the crop, the breeding method to be adopted is depending upon the nature of gene action involved in the expression of different characters. The genetic makeup of genotypes for quantitatively inherited traits can be well understood by the study of genetic parameters. Breeding analysis has been utilized to know the nature and extent of gene action controlling expression of different characters including seed yield and would help in proper planning of a successful breeding programme. Materials and Methods The experimental material comprised of four females as testers viz., AT-285, G.Til-1, G.Til10 and RT-54 and ten males as lines namely AT-253, AT-265, AT-306, AT-307, AT-319, AT-322, AT-341, Bhuva-2, Khadkala-S and IS-209 and their 40 hybrids derived from line x tester mating design. These 56 genotypes along with a two checks, G.Til-2 and G.Til-3 were evaluated in a four environments were created through different time and location for sowing during summer 2016 i.e., E1= Timely sowing 3rd week of February at Amreli (20th February), E2= Timely sowing 3rd week of February at Junagadh (20th February), E3= Late sowing 2nd week of March at Amreli (10th March), and E4= Late sowing 2nd week of March at Junagadh (10th March). The parents and F1‟s with checks were sown in single row (plot) of 2.25 m length with spacing 45 cm x 15 cm. All the agronomical practices and plant protection measures were followed as and when required to raise a good crop of sesame. The observations were recorded on five randomly selected plants from parents and crosses for all characters viz., days to flowering, days to maturity, plant height (cm), height to first capsule (cm) and seed yield per plant (g).Agricultural Research Station, J.A.U., Amreli is located in North Saurashtra Agro-climatic zone-VI of Gujarat state. Deptt. Seed Science and Technology, Sagadividi Farm, J.A.U. Junagadh is located in South Saurashtra Agro Climatic Zone-III of Gujarat state. Standard procedures for analysis of variance were followed. Data were first subjected to the analysis followed for randomized block design as per Panse and Sukhatme (1967). Theoretically heterosis is the deviation of F1 from the mid parental value. But, an increase in F1 over poor parents may not be of practical importance. Therefore, in the present investigation, heterosis was estimated over better parent (BP), which is referred as heterobeltiosis as per Fonseca and Patterson (1968). In addition, an increase in F1 over the standard check hybrid (standard heterosis) is of commercial importance. Hence, the standard heterosis was also worked-out by using popular two check G.Til2 and G.Til-3. Results and Discussion The pooled analysis of variance over environments (Table 1) showed significant differences among the environments (sowing dates and different locations) for all the characters indicating wide variation in environmental conditions or differential expression of traits under different sowing dates and different location. Parents and hybrids mean squares were significant for all the characters under all environments indicating the presence of sufficient diversity among the parents and hybrids for all the characters. The mean squares due to parents vs. hybrids contrast also revealed significant differences for all the characters under all the environments as well as pooled over 1525 Int.J.Curr.Microbiol.App.Sci (2018) 7(10): 1523-1536 environments except P vs. H for seed yield per plant in pooled over environments. Highly significant mean squares due to parents x environments, hybrids x environments, (P vs. H) x E were observed for all the traits for (P vs. H) x E mean squares. This emphasized that parents x environments, hybrids x environments and (P vs. H) x E interacted differently to diverse environments and environments had noticeable influence on these traits. Mean squares due to hybrids were highly significant for all the characters studied. The performance of variance due to P vs H differed significantly than that of parents suggesting the presence of average heterosis for all the traits under all the environments except seed yield per plant in pooled over environments. For earliness traits like days to flowering (Table 2) in which hybrid AT-306 x RT-54 in E1, AT-307 x G.Til-10 in E2, AT-307 x RT54in E3, AT-307 x G.Til-10 in E4; and AT-306 x RT-54 in pooled analysis recorded earliest. The earliest hybrid over better parent was AT306 x RT-54 followed by AT-322 x RT-54, AT-307 x RT-54, AT-307 x G.Til-10 and AT253 x RT-54. Out of 40 hybrids, significant and negative heterobeltiosis crosses was recorded in 9, 4, 32, 20 and 3 in E1, E2, E3, E4 and across the environments, respectively. The range of earliest standard heterosis (H2C1) over G.Til-2 ranged from -8.33 to 6.67 %, 9.76 to 8.13 %, -5.91 to 16.19%, -8.62 to 8.62 % and -6.47 to 6.90 % in E1, E2, E3, E4 and pooled analysis, respectively. In case of G.Til3 the magnitude of standard heterosis (H2C2) ranged from -4.35 to 11.30 %, -7.50 to 10.83 %, -11.61 to 8.93 %, -6.19 to 11.50 % and 5.65 to 7.83 % in E1, E2, E3, E4 and pooled analysis, respectively. In earliness traits like days to maturity (Table 3) the range of heterosis over heterobeltiosis was -4.91 to 10.89%, -5.28 to 10.67%, -13.21 to -0.40%, -8.24 to 5.65%, in E1, E2, E3, E4, respectively. In pooled minimum significant and negative heterobeltiosis (H1) was exhibited by the cross AT-322 x RT-54, AT341 x G.Til-1, AT-306 x AT-285, AT-253 x RT-54 and AT-306 x RT-54. Maximum heterobeltiosis was observed in the cross IS209 x G.Til-10. The cross combination AT306 x AT-285 recorded the highest desirable standard heterosis (H2C1) over G.Til-2 followed by AT-322 x RT-54, AT-341 x AT285, Bhuva-2 x AT-285 and AT-341 x G. Til1 in across the environments. In case of the cross combination AT-306 x AT-285 recorded the highest desirable standard heterosis (H2C2) over G.Til-3 followed by AT-322 x RT-54, AT-341 x AT-285, Bhuva-2 x AT-285 and AT-265 x AT-285 in across the environments. Out 40 of F1s, significant and negative standard heterosis (H2C1) crosses was recorded in 20, 14, 0, 35 and 4 in E1, E2, E3, E4 and across the environments, respectively. Likewise significant and negative standard heterosis (H2C2) crosses was recorded in 9, 5, 11, 25 and 1 in E1, E2, E3, E4 and across the environments, respectively. Positive heterosis for plant height (Table 4) is desirable for developing hybrid with tall plant type with high seed yield per plant. The tall parent was considered as better parent to estimate the heterobeltiosis for plant height. The heterobeltiosis ranged from IS-209 x G.Til-10 in E1, Bhuva-2 x G.Til-10 in E2, Bhuva-2 x G.Til-10 in E3, Bhuva-2 x G.Til-10 in E4, and IS-209 x G.Til-10 and Bhuva-2 x G.Til-10 across the environments. Out of 40 crosses, significant and positive heterobeltiosis crosses was recorded in 20, 39, 20, 37 and 16 in E1, E2, E3, E4 and across the environments, respectively. Out of 40 significant cross, combinations the magnitude of standard heterosis across the environments over H2C1 and H2C2 ranged from -24.34 (AT253 x RT-54) to 14.28 % (IS-209 x G.Til-10) and -20.53 (AT-253 x RT-54) to 20.03% (IS209 x G.Til-10), respectively. 1526 Int.J.Curr.Microbiol.App.Sci (2018) 7(10): 1523-1536 Table.1 Analysis of variance (mean squares) for days to flowering and days to maturity under individual environments and pooled over environments d.f. Source Environment sReplications (E) 3 2 Replications *E Genotypes 6 53 Parents 13 Females (F) 9 Days to flowering E1 21.91* *8.45** E2 Days to maturity 8.01* 17.67** Pooled 203.82** 65.35** 24.13** 31.60** E4 Pooled 705.72** 64.64** 127.60** 201.53** E1 11.54** 11.21** 9.61** 1.63 10.15** 22.74** 16.51** 13.81** 19.39** 15.47** 16.42** 11.19** 26.39** 2.97** 4.98** 0.007 9.47** 6.65** 18.76** 2.28** 2.51** 6.62** 6.25** 5.74** 22.67** E3 E4 E1 Seed yield per plant (g) E2 E3 12.52* * 14.01* 21.36** 8.76** 13.62** 15.20** 31.99** 13.89** 13.01** 7.64** 11.47** 12.16** 7.78** 10.83** 12.28** 34.68** 7.29* 15.04** 7.54** 9.36** 53.00** 12.11** 8.00** 10.67** 22.23** 63.91** 14.53** 7.52** 38.96** 24.76** 7.57** 63.56** 33.64** 19.96** 10.80** 38.08** 15.48** 90.54** 11.22* 10.33** 12.12** 20.74** 90.16** 119.31** 21.04** 16.16** 91.97** Males (M) Hybrids P vs H 3 39 1 PxE HxE (P vs H) x E 39 117 3 * 12.08* * 5.39** 75.09* * - Pooled Error 424 1.88 d.f. Source - - - 1.34 1.76 1.29 3.54** 2.95** 3.17** 1.57 - - - - 5.03 3.17 3.26 2.03 Plant height (cm) 21.11** 39.70** 197.12** 3.37 1.71** E2 E3 E4 Pooled - 82.83** 3.27** 1.59** 2.52** 6.98** 8.16** 3.00** 3.21** 7.90* 30.74** 0.36 1.14** 7.42* 12.87** 29.27** 3.23** 5.77** 10.60** 4.75** 13.23* 2.06** 6.12** 2.40 - - 0.31 0.51 0.177 0.23 3.44** 6.44** 6.32** 0.31 Height to first capsule Environments (E) Replications Replications *E Genotypes 3 2 6 53 E1 46.69** 307.69** E2 29.66* 162.18** E3 51.51** 234.94** E4 52.61** 181.90** Pooled 1814.92** 162.11** 6.08** 229.80** E1 10.96* 143.37** E2 15.55 121.21** E3 35.18** 98.33** E4 17.21* 125.15** Pooled 1607.89** 64.20** 4.89** 124.57** Parents Females (F) 13 9 340.71** 376.96** 258.31** 258.12** 246.52** 262.24** 229.42** 206.54** 326.37** 329.12** 230.05** 258.34** 236.38** 244.40** 162.57** 180.41** 210.17** 210.98** 258.61** 270.19** Males (M) Hybrids P vs H PxE HxE (P vs H) x E 3 39 1 39 117 3 264.44** 299.25** 207.34** - 267.34** 132.74** 60.88** - 223.06** 235.23** 72.94** - 195.93** 167.64** 120.35** - 301.24** 201.56** 1.45 65.77** 74.82** 152.38** 177.69** 110.88** 283.75** - 219.64** 85.62** 12.13 - 146.04** 69.53** 386.34** - 189.82** 98.35** 64.93** - 231.72** 81.75** 51.92* 21.11** 39.70** 197.12** Pooled Error 424 5.23 8.38 5.42 9.75 7.16 2.80 5.81 2.38 5.21 4.05 *, ** Significant against pooled error at 5 % and 1 %, respectively. 1527 Int.J.Curr.Microbiol.App.Sci (2018) 7(10): 1523-1536 Table.2 Heterobeltiosis and standard heterosis over G.Til-2 and G.Til-3 under individual environments and pooled over environments for days to flowering Sr. No. Crosses E1 E2 Heterobeltiosis (H 1) E3 E4 Pooled E1 Std. Heterosis over G.Til-2 (H2C1) E2 E3 E4 Pooled E1 Std. Heterosis over G.Til-3 (H2C2) E2 E3 E4 Pooled 1 AT-253 x AT-285 0.86 6.03** -6.90** -1.72 -1.28 -2.50 0.00 2.86 -1.72 -0.43 1.74 2.50 -3.57 0.88 0.43 2 AT-253 x G.Til-1 0.00 7.69** -9.40** 0.00 3.10 -2.50 2.44 0.95 0.86 0.43 1.74 5.0** -5.36** 3.54* 1.30 3 AT-253 x G.Til-10 -3.31 0.83 -4.13* -3.31* -0.21 -2.50 -0.81 10.48** 0.86 1.72 1.74 1.67 4 AT-253 x RT-54 -4.96** -0.83 -15.70** -6.61** -4.86 -4.17* -2.44 -2.86 -2.59 -3.02 0.00 0.00 5 6 AT-265 x AT-285 AT-265 x G.Til-1 -0.86 -4.27* 3.45* -2.56 -11.21** -11.11** -4.31* -5.98** -4.06 -2.65 -4.17* -6.67** -2.44 -7.32** -1.90 -0.95 -4.31* -5.17** -3.23 -5.17 0.00 -2.61 7 AT-265 x G.Til-10 -1.68 4.20* -8.40** -5.88** -1.49 -2.50 3.81 -3.45* -0.43 1.74 3.33* 8 9 10 AT-265 x RT-54 AT-306 x AT-285 AT-306 x G.Til-1 -4.20* -3.45 -3.42 -1.68 1.72 -5.13** -13.45** -12.07** -11.11** -4.20* 0.00 -6.84** -4.48 -4.27 -3.32 -5.00** -6.67** -5.83** -1.90 -2.86 -0.95 -1.72 0.00 -6.03** -3.45 -3.45 -5.82* -0.87 -2.61 -1.74 -2.50 -1.67 -5.00** 11 AT-306 x G.Til-10 -3.10 0.00 -11.63** -2.33 -2.37 12 AT-306 x RT-54 -6.50** -4.07* -15.45** -7.32** -9.26** -4.17* -4.07* 13 AT-307 x AT-285 -4.31* 6.03** -14.66** 0.86 -3.85 -7.50** 0.00 14 AT-307 x G.Til-1 0.00 5.13** -14.53** 1.71 1.55 -2.50 0.00 15 16 AT-307 x G.Til-10 AT-307 x RT-54 -4.72** -5.69** -7.87** 3.25* -8.66** -17.07** -10.24** -5.69** -4.88 -6.30* 0.83 -3.33 17 AT-319 x AT-285 -0.87 7.83** -10.43** 3.48* 2.22 -5.0** 18 19 20 21 AT-319 x G.Til-1 AT-319 x G.Til-10 AT-319 x RT-54 AT-322 x AT-285 -3.48 4.35* -2.61 -1.72 -0.87 6.96** 4.35* 3.45* -9.57** -2.61 -8.70** -8.62** -0.87 4.35* -1.74 -6.03** -1.56 5.56* 0.00 -4.06 -7.50** 0.00 -6.67** -5.0** -7.32** 0.00 -2.44 -2.44 -0.95 6.67** 0.00 0.95 -1.72 3.45* -2.59 -6.03** 22 23 24 25 AT-322 x G.Til-1 AT-322 x G.Til-10 AT-322 x RT-54 AT-341 x AT-285 -1.71 -0.78 -3.25 -4.31* 7.69** 0.00 -4.88** 6.03** -5.98** -14.73** -14.63** -3.45 2.56 -6.98** -9.76** -0.86 4.20 -2.21 -9.05** 0.22 -4.17* 6.67** -0.83 -7.50** 2.44 4.88** -4.88** 0.00 4.76* 4.76* 0.00 6.67** 26 27 28 29 30 AT-341 x G.Til-1 AT-341 x G.Til-10 AT-341 x RT-54 Bhuva-2 x AT-285 Bhuva-2 x G.Til-1 -0.85 0.85 -2.54 -3.45 0.00 0.00 2.54 -0.85 3.45* 7.76** -11.11** -3.39 -9.32** -12.93** -3.45 -7.69** 1.69 -7.63** -6.90** 2.59 -1.55 3.04 -2.61 -2.65 4.42 -3.33 -0.83 -4.17* -6.67** -3.33 -4.88** -1.63 -4.88** -2.44 1.63 31 32 33 Bhuva-2 x G.Til-10 Bhuva-2 x RT-54 Khadkala-S x AT285 4.31* -0.86 -2.65 12.07** 3.45* 2.65 5.17** -12.07** -9.73** 5.17** -4.31* -6.19** 9.27** -1.10 -2.47 0.83 -4.17* -8.33** 5.69** -2.44 -5.69** 34 Khadkala-S x G.Til1 2.65 7.96** -8.85** 2.70 -3.33 -0.81 35 Khadkala-S x GTil10 8.85** 11.46** 2.50 36 37 38 Khadkala-S x RT-54 IS-209 x AT-285 IS-209 x G.Til-1 39 IS-209 x G.Til-10 5.17** 40 IS-209 x RT-54 0.00 Min. Max. Mean heterosis Desirable heterosis 4.42* 0.86 -4.31* -6.50 8.85 -1.29 9 16.81** 3.54 7.96** 6.90** 3.45* 0.00 -10.34** -12.07** 14.66** 6.03** -7.87 16.81 3.54 4 0.86 -6.03** -17.07 5.17 -8.85 32 2.65 9.73** 0.88 -3.45* -3.45* 6.03** 4.94 -2.14 -1.55 6.00* 4.17* -1.67 -2.50 -7.50** 1.67 0.81 -4.88** -4.07* -9.76** 4.88** -4.88** 3.25* 0.81 7.32** -0.81 0.81 -2.44 8.13** 8.57** 2.61 -8.93** 0.00 -2.17 -8.04** -7.14** -1.77 -2.65 -2.39 -4.35 -2.68 -0.88 0.43 -8.04** -8.93** -7.14** 0.88 2.65 -3.54* -2.61 -2.61 -5.00 8.70** 10.00** -2.80 0.00 -1.67 -7.14** 0.88 -1.96 -5.71** 0.86 -3.02 -3.48 2.50 -11.61** 3.54* -2.17 -4.76* 2.59 -1.08 1.74 2.50 -10.71** 5.31** -0.22 10.48** -2.86 -1.72 0.00 0.86 -0.65 5.22** 0.87 2.59 -0.86 -4.53 2.37 -3.02 -3.23 3.45* 3.45* -4.31* -0.86 -0.95 8.57** 1.90 -3.81 6.67** 16.19** -2.86 -2.86 -1.90 11.50** 7.39** 3.57 -8.93** 0.88 2.65 -0.87 3.33* -8.04** 5.31** 0.00 -3.48 4.35* -2.61 -0.87 -5.00** 2.50 0.00 0.00 -7.14** 0.00 -6.25** -5.36** 0.88 6.19** 0.00 -3.54* -3.70 3.26 -2.17 -2.39 1.51 4.96 -2.59 -0.65 0.00 11.30** 3.48 -3.48 5.00** 7.50** -2.50 2.50 -1.79 -1.79 -6.25** 0.00 6.19** 6.19** -1.77 1.77 2.39 5.87* -1.74 0.22 -6.90** 3.45* -6.03** -6.90** 2.59 -4.09 2.16 -3.45 -4.96 1.72 0.87 3.48 0.00 -2.61 0.87 -2.50 0.83 -2.50 0.00 4.17* -7.14** 1.79 -4.46* -9.82** 0.00 -4.42* 6.19** -3.54* -4.42* 5.31** -3.26 3.04 -2.61 -4.13 2.61 5.17** -4.31* -8.62** 6.68* -3.45 -6.47* 5.22** 0.00 -4.35* 8.33** 0.00 -3.33* 8.93** -8.93** -8.93** 7.96** -1.77 -6.19** 7.61** -2.61 -5.65* -1.90 0.00 6.90** -1.72 -3.45* -3.45* -1.51 6.90** 0.65 -1.51 -4.09 0.87 6.96** 2.61 1.74 -3.48 1.67 -8.04** 10.00** 4.46* 1.67 3.33* 0.00 0.89 -7.14** -8.93** 10.00** 4.46* 2.65 9.73** 0.88 -0.88 -0.88 8.85** 1.74 0.22 -0.65 7.83** 1.52 -0.65 -3.26 6.03** 6.68* 6.09** 0.00 -0.64 -3.33 0.00 3.81 0.00 0.00 0.87 2.50 -2.68 2.65 0.87 -10.24 9.73 -2.21 20 -9.26 11.46 -0.65 3 -8.33 6.67 -3.23 19 -9.76 8.13 -1.02 11 -5.71 16.19 2.10 2 -8.62 8.62 -0.86 13 -6.47 6.90 -0.85 2 -4.35 11.30 0.98 1 -7.50 10.83 1.46 4 -11.61 8.93 -4.29 24 -6.19 11.50 1.77 6 -5.65 7.83 0.02 1 1528 11.43** 1.79 -2.50 5.83** 11.43** 7.62** -0.95 -2.86 6.47* 3.54* -1.72 -0.95 8.62** 0.00 -5.00** 3.57 7.61** Int.J.Curr.Microbiol.App.Sci (2018) 7(10): 1523-1536 Table.3 Heterobeltiosis and standard heterosis over G.Til-2 and G.Til-3 under individual environments and pooled over environments for days to maturity Sr. No. Crosses Heterobeltiosis (H 1) 1 AT-253 x AT-285 1.57 5.12** 2 AT-253 x G.Til-1 0.39 3 AT-253 x G.Til-10 4 E1 E2 Std. Heterosis over G.Til-2 (H2C1) E4 Pooled E1 -5.91** -1.97* 2.01 -1.53 1.97* -4.72** -1.57 -0.89 -2.67* 2.36* 2.76** -3.15** -1.18 0.20 -0.76 AT-253 x RT-54 0.79 3.17** -6.75** -5.56** -2.85 -3.05** 5 6 AT-265 x AT-285 AT-265 x G.Til-1 0.40 0.80 1.99* 1.59 -7.57** -5.98** -4.38** -4.38** -1.31 -2.57 -3.82** -3.44** 7 AT-265 x G.Til-10 2.79* 4.78** -4.38** -3.19** -0.59 -1.53 8 AT-265 x RT-54 0.80 2.79** -5.98** -5.18** -2.48 -3.44** 9 10 11 12 13 14 15 16 17 18 19 20 21 22 AT-306 x AT-285 AT-306 x G.Til-1 AT-306 x G.Til-10 AT-306 x RT-54 AT-307 x AT-285 AT-307 x G.Til-1 AT-307 x G.Til-10 AT-307 x RT-54 AT-319 x AT-285 AT-319 x G.Til-1 AT-319 x G.Til-10 AT-319 x RT-54 AT-322 x AT-285 AT-322 x G.Til-1 -1.57 -2.26* 0.37 1.19 -1.57 -3.40** 1.89 2.38* -0.78 -4.91** -1.46 1.19 -1.57 -2.64* -1.96* -2.64** 1.11 1.59 4.31** -5.28** 0.38 1.59 0.00 -2.64** -2.55** 0.00 1.57 -4.15** -10.20** -9.06** -10.74** -8.33** -8.63** -13.21** -9.43** -7.94** -9.80** -11.32** -12.77** -7.54** -7.84** -8.30** -8.24** -5.66** -2.59** -1.98* -3.14** -6.42** -4.53** -1.59 -0.78 -7.92** -7.30** 0.00 -6.27** -7.92** -2.92 -0.69 2.34 -2.85 0.40 -2.18 2.18 -1.29 -0.20 -2.56 -2.37 -2.55 -0.91 -1.58 -4.20** -1.15 3.44** -2.67* -4.20** -2.29* 3.05** -1.53 -3.44** -3.82** 3.05** -2.67* -4.20** -1.53 23 24 AT-322 x G.Til-10 AT-322 x RT-54 2.96** -0.79 -1.48 1.59 -11.11** -9.52** -8.15** -5.95** -1.43 -4.62** 25 26 27 28 AT-341 x AT-285 AT-341 x G.Til-1 AT-341 x G.Til-10 AT-341 x RT-54 0.00 4.86** 4.86** 5.26** -3.24** -6.88** -0.40 -4.45** -4.86** -4.05** 0.40 -3.64** 29 30 Bhuva-2 x AT-285 Bhuva-2 x G.Til-1 -0.39 -4.56** -10.59** -11.79** -7.45** -7.22** 31 Bhuva-2 x G.Til-10 2.28* 6.08** -3.42** -0.76 32 Bhuva-2 x RT-54 1.59 3.17** -8.33** -1.98* -2.17 -2.29* 33 Khadkala-S x AT-285 0.40 5.24** -6.85** 0.00 -0.40 -4.96** 34 Khadkala-S x G.Til-1 3.63** 4.84** -6.85** 2.42** -0.69 -1.91 35 36 37 Khadkala-S xG.Til-10 Khadkala-S x RT-54 IS-209 x AT-285 10.89** 6.85** 3.56** 7.26** 3.63** 2.37* -2.02* -4.44** -9.88** 5.65** 0.40 -2.77** 3.67* -0.10 0.20 38 IS-209 x G.Til-1 3.56** 3.16** -5.53** -1.98* 1.30 39 IS-209 x G.Til-10 8.70** 10.67** -2.77** 4.74** 6.92** 40 IS-209 x RT-54 0.79 0.79 -7.54** 1.98* 0.10 1.62 2.43* 6.07** 3.24** 1.18 0.00 Min. -4.91 -5.28 Max. Mean heterosis Desirable heterosis 10.89 1.28 5 10.67 1.93 6 E3 -13.21 -0.40 -7.38 39 E3 E4 1.27 -1.58 0.80 -1.16 0.39 2.54* -1.19 0.10 0.49 0.78 1.16 4.24** -0.79 -8.11** -2.57 -1.55 0.78 -0.42 -5.93** -1.79 0.43 2.16* -7.34** -7.34** -3.26 -2.86 -2.33* -1.94 -0.78 -1.16 -1.69 0.00 -5.14** -5.14** -2.49 -2.09 0.77 3.9** -6.18** -0.89 0.00 1.94* 1.69 -3.95** -0.10 -1.15 2.16* -8.11** -2.76 -1.94 0.00 0.00 -5.93** -1.99 -4.21** -1.15 4.60** -1.92* 1.92* -3.83** 1.92* -1.92* -2.30* -1.15 2.30* -3.45** -0.77 -2.68** -0.87 4.33** 4.33** 0.00 0.87 -0.43 3.90** 0.43 -0.43 1.73 3.46** 0.87 1.73 5.19** -9.65** -3.47** 1.54 -4.63** -4.63** -4.25** -2.32** -4.25** -2.32** -5.79** -1.93* -2.70** -7.72** -5.79** -4.84** -0.49 3.46 -2.37 -1.58 -2.76 1.58 -1.88 -2.17 -2.37 1.68 -2.07 -2.86 -1.38 -2.71* 0.39 5.04** -1.16 -2.71* -0.78 4.65** 0.00 -1.94 -2.33* 4.65** -1.16 -2.71* 0.00 -3.10** 0.00 5.81** -0.78 3.10** -2.71** 3.1** -0.78 -1.16 0.00 3.49** -2.33* 0.39 -1.55 -2.97** 2.12* 2.12* -2.12* -1.27 -2.54* 1.69 -1.69 -2.54* -0.42 1.27 -1.27 -0.42 2.97** -7.51** -1.19 3.95** -2.37** -2.37** -1.98* 0.00 -1.98* 0.00 -3.56** 0.40 -0.40 -5.53** -3.56** -4.08* 0.30 4.28* -1.59 -0.80 -1.99 2.39 -1.09 -1.39 -1.59 2.49 -1.29 -2.09 -0.60 6.11** -4.58** 1.92* -1.92* 3.90** -1.30 -4.25** -8.49** 1.88 -4.15* 7.75** -3.10** 3.10** -0.78 1.69 -3.39** -1.98* -6.32** 2.69 -3.38 -2.11 -2.97 0.59 -1.98 -5.73** -1.15 -1.15 -0.76 -3.83** -3.07** 0.38 -2.30* 3.46** -0.43 6.49** 2.16* -9.27** -8.49** -4.25** -8.11** -4.05* -3.36 0.20 -2.37 -4.26** 0.39 0.39 0.78 -2.71** -1.94* 1.55 -1.16 1.27 -2.54* 4.24** 0.0 -7.11** -6.32** -1.98* -5.93** -3.28 -2.59 1.00 -1.59 -1.71 -2.46 -3.05** -4.20** -1.15 0.77 -1.30 0.43 -8.88** -5.79** -3.65* -2.27 -1.55 -2.71* 0.00 1.94* -3.39** -1.69 -6.72** -3.56** -2.89 -1.49 2.67* 4.96** 1.15 0.00 2.30* E3 E4 Std. Heterosis over G.Til-3 (H2C2) 3.49** 4.63** E2 Pooled E1 3.46** -3.86** 0.00 0.00 -0.77 4.76** -3.47** -0.69 0.00 6.49** -3.09** -0.38 1.73 -1.92* -2.30* 6.90** 9.96** 0.77 4.94** 4.26** E2 8.14** 7.63** 3.16** Pooled 1.29 5.77** -0.38 0.00 -4.63** -1.88 -0.78 0.78 -2.12* -2.37** -1.09 0.00 0.00 -4.25** -2.37 -3.49** 1.16 -2.12* -1.98* -1.59 -0.38 0.00 -1.93* -1.09 -0.39 0.78 -2.12* 0.40 -0.30 1.92* -1.53 -0.77 5.19** 2.60* -1.30 1.16 -3.86** -5.02** 3.26 -0.49 -1.78 6.59** 2.71* 1.55 0.00 0.00 3.46** -4.25** -0.30 1.55 1.16 1.27 4.96** 7.28** 6.49** 2.32** 6.59** 8.53** 4.24** -3.05** -2.68** -8.24 -4.62 -5.73 -4.21 5.65 -3.12 27 6.92 -0.67 1 6.11 -1.38 20 7.28 -0.37 14 1529 5.23** 3.10** -0.39 0.39 2.97** 0.42 -3.39** 3.56** -1.58 -2.77** 4.08* 0.30 -1.00 -1.98* 0.50 4.74** 6.07** 0.87 -0.77 -1.48 -1.55 -1.55 -1.27 1.58 -0.70 -1.30 -9.65 -4.84 -4.26 -3.10 -3.39 -7.51 -4.08 2.32 -4.58 35 5.23 -1.11 4 4.74 -2.32 25 6.07 -0.32 1 9.96 2.77 0 7.75 0.15 9 8.53 0.78 5 7.63 0.11 11 Int.J.Curr.Microbiol.App.Sci (2018) 7(10): 1523-1536 Table.4 Heterobeltiosis and standard heterosis over G.Til-2 and G.Til-3 under individual environments and pooled over environments for plant height (cm) Sr. No. Crosses 1 2 3 4 5 6 7 8 9 10 AT-253 x AT-285 AT-253 x G.Til-1 AT-253 x G.Til-10 AT-253 x RT-54 AT-265 x AT-285 AT-265 x G.Til-1 AT-265 x G.Til-10 AT-265 x RT-54 AT-306 x AT-285 AT-306 x G.Til-1 -3.82* 7.28** 12.95** -4.36** -6.55** 0.52 13.73** 29.69** -5.50** 1.09 13.19** 13.37** 40.63** 3.76* 15.67** 13.75** 23.76** 38.40** 10.57** 6.85** -14.74** -1.61 12.53** -10.08** -4.22** -4.78** -0.40 18.46** -0.60 -5.01** 18.50** 17.72** 37.65** -7.34** 7.46** 11.97** 18.58** 31.57** 19.44** 15.48** -1.04 4.62 20.67** -8.50* 3.64 4.90 14.52** 30.22** 3.91 0.44 -20.86** -11.73** -7.07** -21.31** -19.49** -14.24** -2.01 11.73** -14.83** -13.75** 11 AT-306 x G.Til-10 17.70** 36.06** 20.75** 45.59** 27.49** 6.09** 12 AT-306 x RT-54 14.43** 23.75** 8.77** 19.34** 14.30** 3.14* 13 AT-307 x AT-285 6.12** 14.63** 0.28 21.30** 10.6** -6.33** -9.53** 14 AT-307 x G.Til-1 10.87** 18.07** 5.75** 21.98** 10.37** -5.40** 15 16 AT-307 x G.Til-10 AT-307 x RT-54 2.45 13.52** 22.97** 20.75** 16.18** 9.18** 23.47** 19.58** 16.28** 15.77** -9.57** 0.20 17 AT-319 x AT-285 10.13** 18.10** 4.80** 21.44** 18 AT-319 x G.Til-1 -21.50** 23.43** -14.06** 21.56** -1.51 19 AT-319 x G.Til-10 17.16** 26.48** 9.90** 19.74** 13.85** 20 AT-319 x RT-54 -25.37** 23.84** -25.37** 26.48** -3.88 21 AT-322 x AT-285 -19.81** 9.85** -22.97** 8.27** -7.26* 22 AT-322 x G.Til-1 -13.29** 9.84** -6.33** 13.29** -3.14 23 24 25 26 27 AT-322 x G.Til-10 AT-322 x RT-54 AT-341 x AT-285 AT-341 x G.Til-1 AT-341 x G.Til-10 -7.80** -24.93** 12.37** 9.90** -2.93* 14.70** 12.47** 16.95** 15.42** 7.74** 3.27* -12.15** 7.55** 5.70** -10.75** 18.49** 14.50** 9.41** 4.32* 1.34 28 29 30 31 AT-341 x RT-54 Bhuva-2 x AT-285 Bhuva-2 x G.Til-1 Bhuva-2 x G.Til-10 10.01** 51.48** -7.68** 51.19** 13.59** 54.02** 51.12** 82.40** 5.51** 55.03** 28.46** 67.34** 32 33 Bhuva-2 x RT-54 Khadkala-S xAT285 6.37** -6.54** 39.91** -2.67 34 Khadkala-S x G.Til1 -10.41** 35 Khadkala-S xGTil10 -17.78** 36 37 38 39 Khadkala-S x RT-54 IS-209 x AT-285 IS-209 x G.Til-1 IS-209 x G.Til-10 40 E1 E2 Heterobeltiosis (H 1) E3 E4 Pooled Std. Heterosis over G.Til-2 (H2C1) E2 E3 E4 Pooled E1 Std. Heterosis over G.Til-3 (H2C2) E2 E3 E4 Pooled -16.73** -16.59** 3.47* -23.66** -10.89** -13.21** -4.65** 6.63** -10.89** -18.48** -22.0** -9.99** 2.95 -17.74** -8.24** -9.66** -4.59** 13.48** -0.38 -9.88** -14.21** -14.77** -0.35 -32.92** -18.53** -15.94** -10.11** -0.26 -5.27** -13.3** -18.18** -13.50** -0.22 -24.34** -14.48** -13.44** -5.50 7.46* -8.02** -14.06** -14.80** -4.97** 0.05 -15.27** -13.32** -7.66** 5.50** 20.30** -8.30** -7.14** -9.36** -9.22** 12.61** -16.91** -3.01* -5.54** 3.77* 16.05** -3.01* -11.28** -20.70** -8.49** 4.66** -16.37** -6.71** -8.16** -3.00 15.37** 1.28 -8.38** -12.47** -13.05** 1.67 -31.56** -16.88** -14.24** -8.29** 1.76 -3.35* -11.55** -14.05** -9.14** 4.80 -20.53** -10.17** -9.07** -0.73 12.87** -3.39 -9.73** 9.66** 21.02** 15.46** 12.85** 14.22** 19.35** 23.03** 17.81** 18.53** 9.01** -5.36** 1.17 11.05** 8.55** 10.82** -3.44* 6.27 -1.58 -5.79** -6.02 0.85 -1.53 0.06 -3.88** -1.28 -9.92** 0.33 -8.42** -6.20* 1.85 -1.96 -2.94* -4.70** 14.03** 7.15** -4.10** -7.13** -1.18 -1.62 -0.26 -2.64 7.88** 5.64** 3.73* 2.00 -6.57** -1.48 15.93** 8.93** -2.16 -5.24** 3.80 3.34 -7.71** -11.50** -2.35 -10.45** -8.32** -0.63 -3.68* -0.72 -8.64** -3.70 -34.22** -7.51** -19.92** -10.37** -17.41** -29.18** 0.67 -18.59** -8.55** -13.24** -1.82 -5.22** 2.40 -11.71** -4.53 4.11** -9.92** 0.29 -37.46** -7.20** -30.46** -6.74** -19.39** -32.66** 1.00 -29.30** -4.85** -15.33** -25.28** -8.47** -20.20** -11.23** -15.81** -19.56** -0.38 -18.87** -9.43** -11.57** -26.02** -16.20** -11.14** -14.95** -17.12** -20.35** -8.79** -9.66** -13.22** -12.95** 5.91 -5.14 9.05** 4.50 -2.97 -14.09** -31.12** 9.67** -6.23** 13.89** -4.43** -7.73** 2.06 -11.94** 13.04** 6.99** -10.37** 16.70** 0.27 16.43** -2.85* -7.56** -6.05** -21.68** 4.62** -3.85 -13.89** 4.85 -10.59** 11.68** -7.51** -25.85** 18.08** 0.95 22.62** 4.01** 0.43 11.08** -4.16** 23.03** 8.77** -8.88** 18.65** 1.94 18.37** -0.88 -5.69** -4.14** -20.10** 6.74** 0.99 -9.55** 10.13** -6.08 17.3** 5.83** 57.78** 59.09** 83.71** -3.36 20.40** 3.44 33.40** 0.93 2.70 -37.41** 2.50 -6.80** -6.63** -8.38** 10.58** 7.64** 16.87** -3.17* 26.15** -14.56** -5.87** -5.10** 9.59** -3.94 0.91 -13.34** 11.73** 8.67** 10.57** -32.61** 10.36** 1.43 1.62 -0.29 20.30** 9.43** 18.81** -1.55 28.25** -12.83** -3.97** -3.17* 11.81** 0.91 6.00 -8.97** 17.37** -7.24** -17.40** 49.02** -4.78** -4.92 -9.93** -27.88** -8.79** -15.18** -15.06** -30.08** -10.37** -11.10** -18.23** -20.35** -13.40** -22.36** -1.80 -7.69** -7.55** -28.91** -8.88** -9.30** -16.57** -16.33** -9.04** 20.60** 9.21** 23.48** -23.56** -7.99** 3.60* -7.30** -9.04** -17.71** -5.42** -4.46 3.60** -27.15** 10.67** -8.94** -3.53* 8.69** -4.97** 14.25** 4.31 7.92** 9.84** -13.36** 53.92** 12.68** 33.84** 37.43** 65.03** -2.94 19.68** -9.77** 56.38** 21.62** 44.61** 47.61** 67.62** -2.40 9.03* -0.86 38.00** -0.98 -18.90** -36.03** 13.65** -7.55** -11.63** -9.26** 8.96** -0.98 -1.75 -25.93** 28.38** -1.81 -6.05** -4.10** 8.90** IS-209 x RT-54 -9.51** 27.59** 14.89** 16.42** -3.54 -33.19** -15.76** -5.68** Min. -25.37 -2.67 -27.15 -7.34 -9.93 -37.46 -23.66 -30.46 53.92 4.14 20 82.40 23.35 39 67.34 4.55 20 83.71 24.09 37 38.00 6.59 16 13.89 -11.41 6 13.04 -6.60 7 28.38 -1.70 13 Max. Mean heterosis Desirable heterosis 9.33* E1 6.31 1530 5.71** 3.15* 0.14 5.33** 3.86** 18.30** -3.39* 16.57** 9.57** -2.98 -9.71** -17.90** 14.28** 6.61** -12.68** -31.13** 22.36** 0.62 -3.82* -1.24 18.60** 0.67 -0.11 -24.69** 30.52** 0.18 -4.14** -2.16 11.11** 1.91 -5.16 -13.77** 20.03** -24.36** -20.13** -28.07** -8.31** -4.11** -22.83** -16.1** -32.92 -24.34 -32.66 -16.91 -29.30 -31.56 -20.53 15.46 -7.64 5 14.28 -6.98 5 22.62 -4.62 14 23.03 1.66 14 30.52 -0.06 15 17.81 -5.77 5 20.03 -2.29 7 Int.J.Curr.Microbiol.App.Sci (2018) 7(10): 1523-1536 Table.5 Heterobeltiosis and standard heterosis over G.Til-2 and G.Til-3 under individual environments and pooled over environments for height to first capsule Sr. No. Crosses Heterobeltiosis (H 1) E1 E2 E3 Std. Heterosis over G.Til-2 (H2C1) E4 Pooled 1 AT-253 x AT-285 -36.02** 13.38** -40.14** 30.36** 2 AT-253 x G.Til-1 1.54 14.92** -3.95 3 AT-253 x G.Til-10 6.17 77.19** -6.52 4 AT-253 x RT-54 -7.89 1.37 -26.93** 5.15 5 AT-265 x AT-285 -15.97** 4.03 -25.97** -4.03 6 AT-265 x G.Til-1 4.68 38.13** 0.67 52.84** 15.08* 7 AT-265 x G.Til-10 15.81** 51.13** -5.97 56.77** 8 AT-265 x RT-54 53.71** 78.55** 37.10** E1 E2 E3 E4 Std. Heterosis over G.Til-3 (H2C2) Pooled E1 E2 -14.86 -53.49** -31.57** -47.28** -22.84** -37.25** -43.83** -20.93** 35.16** 3.69 -26.18** -30.64** -15.41** -20.00** -23.57** -10.84** 81.82** 29.40** -22.82** 6.94* -17.67** 7.61** -4.63 -6.78 -13.91 -33.04** -38.82** -35.65** -37.77** -36.54** -13.92 -35.04** -33.23** -30.66** -39.59** -21.95** -14.49** -9.06** -7.21* 24.47** -10.47** -3.00 -11.93** -1.32 -6.00 57.58** 50.72** 18.83** 28.40** -0.81 14.60** E3 E4 Pooled -42.79** -20.17** -30.01** -19.86** -8.20* -17.23** -14.76* 23.56** -10.66** 11.34** 6.37 -19.13** -29.31** -30.16** -35.61** -29.23** -34.99** -21.54** -22.85** -24.75** -37.5** -27.5** -13.09* -5.72 -1.20 -1.31 -3.99 -3.07 8.13* 12.08** -4.43 2.10 4.83 13.82* 43.52** 32.42** 39.34** 2.63 26.94** 9 AT-306 x AT-285 -19.22** 45.47** -15.94** 60.63** 12.09 -35.54** -3.62 -18.73** 4.37 -11.74* -22.14** 11.36** -11.80** 7.98** -1.57 10 AT-306 x G.Til-1 37.29** 54.85** 25.08** 75.25** 31.76** 2.37 -4.14 12.99** 6.40* 3.75 23.64** 10.77** 22.62** 10.08** 15.71* 11 AT-306 x G.Til-10 11.88** 99.38** 7.50* 110.94** 49.87** -10.72** 32.09** 3.93 37.06** 18.01** 7.83* 52.63** 12.79** 41.81** 31.61** 12 AT-306 x RT-54 44.38** 69.22** 26.41** 47.34** 39.79** 15.21** 12.11** 22.21** -4.26 10.07 39.16** 29.55** 32.62** -0.95 22.76** 13 AT-307 x AT-285 27.93** 50.91** 17.02** 68.43** 33.26** -3.49 -5.49 6.95* 3.45 -0.03 16.57** 9.21** 16.07** 14 AT-307 x G.Til-1 23.24** 42.81** 13.21** 57.53** 25.29** -8.10** -11.59** 2.27 -4.37 -6.00 10.99** 2.15 10.98** 15 16 AT-307 x G.Til-10 AT-307 x RT-54 19.67** 43.47** 67.11** 68.76** 10.41** 32.07** 68.93** 67.93** 33.68** 44.57** -9.73** 8.23** 4.66 5.69 0.91 20.69** 3.76 3.15 0.29 8.46 9.04* 30.72** 20.93** 22.13** 9.51* 30.98** 17 AT-319 x AT-285 24.64** 43.92** 13.29** 47.16** 26.07** -4.11 18 AT-319 x G.Til-1 -38.63** 54.68** -27.59** 55.52** 2.55 -54.24** -4.24 -34.59** -5.58 19 AT-319 x G.Til-10 30.63** 20 AT-319 x RT-54 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 AT-322 x AT-285 AT-322 x G.Til-1 AT-322 x G.Til-10 AT-322 x RT-54 AT-341 x AT-285 AT-341 x G.Til-1 AT-341 x G.Til-10 AT-341 x RT-54 Bhuva-2 x AT-285 Bhuva-2 x G.Til-1 Bhuva-2 x G.Til-10 Bhuva-2 x RT-54 Khadkala-S xAT285 Khadkala-S xG.Til-1 Khadkala-S xGTil10 Khadkala-S x RT-54 IS-209 x AT-285 IS-209 x G.Til-1 IS-209 x G.Til-10 IS-209 x RT-54 Min. Max. Mean heterosis Desirable heterosis -8.07** 5.59 -7.82** 7.04* -1.05 7.35* 6.72* 11.50 4.83 11.85 20.97** -4.42 15.81** 6.22 14.59** -4.62 6.60 -22.25** -44.73** 10.65** -29.02** -2.31 -13.29* 49.92** -15.72** 33.23** 18.69* 0.50 -4.24 -21.45** -16.55** 21.39** 10.65** -14.75** -13.66** 0.36 -36.3** 45.06** -43.11** 60.78** 1.62 -51.0** -7.35* -46.98** 0.71 -22.96** -40.81** 7.06* -42.46** 4.20 -14.08* -29.87** -27.93** -15.45** -43.24** -47.71** 28.09** -20.21** 10.84** 98.60** -9.83 114.30** 24.16** -8.13* -21.57** -42.25** 9.89** 8.77 -23.68** 72.81** -11.84* -47.71 114.33 6.42 16 27.49** 30.77** 44.13** 31.5** 12.19** 37.79** -13.44** 15.72** 160.96** 125.84** 256.20** 98.31** -2.49 36.62** 14.12** 18.16** 83.33** 95.83** 193.42** 60.53** -13.44 256.18 57.14 1 -34.62** -25.75** -14.26** -28.97** -44.43** 17.22** -42.00** 0.95 82.58** 36.52** 103.90** -1.40 -32.63** 7.53 -48.12** -23.71** 6.80 -7.46 104.61** 12.94* -48.12 104.61 1.02 16 42.64** 42.64** 43.09** 44.13** 18.74** 23.75** 5.80* 13.01** 140.73** 170.22** 241.85** 144.94** -1.97 40.64** 29.15** 29.00** 80.26** 115.79** 166.45** 57.24** -4.03 241.85 62.34 0 -4.18 -8.59 8.07 -4.70 -18.27** 10.38 -22.66** -9.19 20.70** -1.19 52.61** -8.95 -14.42* 0.87 -17.96** -10.67 16.60 16.87 88.70** 4.46 -22.66 88.70 12.36 4 -41.15** -46.26** -29.05** -52.37** -50.25** -4.49 13.22** 2.00 -11.85** -59.98** -4.86 -44.89** -12.59** -41.52** -21.45** 1.12 -38.15** -56.61** -1.75 -49.88** -59.98 18.83 -22.14 27 -11.18** -19.05** 0.41 -8.39** -11.39** -14.70** 1.97 -11.59** -3.83 -16.77** 31.26** -26.92** -22.98** -15.42** 28.88** -9.73** -13.46** -7.56* 38.51** -24.22** -38.82 38.51 -6.01 22 -33.53** -32.93** -12.84** -27.79** -35.95** 5.89 -0.30 12.54** -1.81 -26.59** 9.67** -46.98** -22.36** -2.87 -14.50** -14.95** -26.44** -36.25** 40.94** -22.21** -47.28 40.94 -11.87 24 -2.54 -13.40** -2.23 -1.52 -8.02** -24.87** 22.23** -15.33** -12.99** -2.34 23.55** -11.47** -24.06** -14.62** 43.05** -3.35 -16.55** -0.10 23.35** -27.21** -39.59 43.05 -4.25 17 -20.06** -26.50** -9.84 -20.50** -24.30** -11.24 10.01 -4.80 -7.96 -24.66** 16.37** -30.57** -20.73** -18.89** 12.74* -6.35 -22.66** -22.49** 25.15** -30.72** -37.25 25.15 -10.43 19 -28.92** -35.09** -14.31** -42.47** -39.91** 15.36** 36.75** 23.19** 6.48 -51.66** 14.91** -33.43** 5.57 -29.37** -5.12 22.14** -25.30** -47.59** 18.67** -39.46** -51.66 43.52 -5.96 18 2.63 -6.46 16.03** 5.86 2.39 -1.44 17.82** 2.15 11.12** -3.83 51.67** -15.55** -11.00** -2.27 48.92** 4.31 0.00 6.82* 60.05** -12.44** -29.31 60.05 8.60 7 -27.87** -27.21** -5.41 -21.64** -30.49** 14.92** 8.20* 22.13** 6.56 -20.33** 19.02** -42.46** -15.74** 5.41 -7.21 -7.70* -20.16** -30.82** 52.95** -15.57** -42.79 52.95 -4.36 20 0.84 -10.40** 1.16 1.89 -4.83 -22.27** 26.47** -12.39** -9.98** 1.05 27.84** -8.4** -21.43** -11.66** 48.00** 0.00 -13.66** 3.36 27.63** -24.68** -37.50 48.00 -0.93 14 -10.84 -18.03** 0.56 -11.33 -15.58* -1.01 22.70** 6.17 2.65 -15.97* 29.78** -22.57** -11.59 -9.54 25.73** 4.44 -13.75* -13.55* 39.58** -22.73** -30.01 39.58 -0.10 13 1531 -10.01 Int.J.Curr.Microbiol.App.Sci (2018) 7(10): 1523-1536 Table.6 Heterobeltiosis and standard heterosis over G.Til-2 and G.Til-3 under individual environments and pooled over environments for seed yield per plant (g) Sr. No. Crosses Heterobeltiosis (H 1) 1 AT-253 x AT-285 -22.92* 63.19** -20.83* 20.14* 8.39 -36.21** 12.44 2 AT-253 x G.Til-1 -44.37** 62.25** -45.70** 17.88* -3.13 -51.72** 3 AT-253 x G.Til-10 -1.60 48.40** -33.20** -40.80** 6.76 4 AT-253 x RT-54 36.61** -25.68** -28.96** -7.10 5 AT-265 x AT-285 -19.58* -3.50 -32.17** 6 AT-265 x G.Til-1 -15.89 -19.21 -8.61 7 AT-265 x G.Til-10 -0.80 58.40** -53.60** 8 AT-265 x RT-54 -42.08** 8.74 -45.90** 32.87** E1 9 AT-306 x AT-285 18.88 10 AT-306 x G.Til-1 -33.77** 11 AT-306 x G.Til-10 12 E2 E3 Std. Heterosis over G.Til-2 (H2C1) E4 Pooled E2 E3 Std. Heterosis over G.Til-3 (H2C2) E4 Pooled -17.99* -8.95 -11.10 -45.59** -11.99* -31.74** -19.16** -25.70** 17.22* -41.01** -6.32 -17.28* -58.82** -8.24 -50.9** -16.82** -30.87** 41.38** 77.51** 20.14* -22.11** 30.90** 20.59** 38.95** 0.00 -30.84** 9.39 -12.83 43.68** -34.93** -6.47 -10.53 -3.65 22.55** -49.06** -22.16** -20.56** -19.48** -11.89 -7.57 -33.91** -33.97** -30.22** -33.68** -33.15** -43.63** -48.31** -41.92** -41.12** -44.13** 2.65 -10.86 -27.01** -41.63** -0.72 -18.42** -23.88** -37.75** -54.31** -17.37* -27.57** -36.38** -46.80** 2.29 42.53** 89.47** -16.55 -30.00** 25.42** 21.57** 48.31** -30.54** -37.85** 4.81 -44.26** -35.71** -39.08** -4.78 -28.78** -46.32** -28.93** -48.04** -25.47** -40.72** -52.34** -40.61** E1 E2 E3 E4 Pooled 2.10 -17.48 -2.30 -9.09 5.04 -37.89** -12.36 -16.67* -28.84** -12.57 -44.86** -26.76** 13.25 -34.44** -5.30 -15.63 -42.53** -18.18* -28.78** -24.74** -27.95** -50.98** -35.96** -40.72** -33.18** -39.79** -3.20 38.40** -30.80** -20.00** 10.08 39.08** 65.55** 24.46** 5.26 34.97** 18.63** 29.59** 3.59 -6.54 12.79* AT-306 x RT-54 -60.11** -38.80** -59.02** -49.73** -55.27** -58.05** -46.41** -46.04** -51.58** -50.56** -64.22** -58.05** -55.09** -57.01** -58.69** 13 AT-307 x AT-285 -32.29** 53.65** -41.67** 2.08 31.13** -25.29** 41.15** -19.42* 3.16 2.95 -36.27** -32.93** -8.41 -13.97* 14 AT-307 x G.Til-1 -41.15** -2.60 -50.52** -21.35** -10.20 -35.06** -10.53 -31.65** -20.53** -23.31** -44.61** -29.96** -43.11** -29.44** -35.92** 15 16 AT-307 x G.Til-10 AT-307 x RT-54 -50.40** -15.10* -24.0** 21.88** -53.20** -48.44** -38.00** -37.50** -32.88** -21.73** -28.74** -6.32 -9.09 11.96 -15.83 -28.78** -18.42** -36.84** -17.70* -13.48 -39.22** -20.10** -28.84** -12.36* -29.94** -40.72** -27.57** -43.93** -31.22** -27.70** 17 AT-319 x AT-285 46.15** 95.10** -0.70 23.78** 56.40** 20.11* 33.49** 2.16 -6.84 -14.97* -17.29** -5.28 -37.09** 14.40** -45.90** -18.88 -52.98** -2.00 -55.19** -35.14** -36.68** 11.20* -47.88** 19.23* -9.62 -18.80** -43.17** -30.63** -3.75 -39.60** -52.46** -36.3** -11.92 -8.80 -45.36** -60.11 46.15 -21.72 5 8.61 82.80** -18.58* 91.61** -35.76** 67.20** -10.38 -37.45** -31.66** 37.45** -22.01** 13.46 -7.69 -15.60* -16.94* -21.25* 65.63** -1.20 -56.83** -39.04** 20.53* 4.40 -37.16** -56.83 95.10 10.56 15 -38.41** -36.00** -69.95** -9.09 -25.83** -37.20** -38.80** -44.40** -46.33** -28.19** -62.93** -28.85** 4.49 -32.00** -63.93** -37.50** -10.63 -50.00** -32.24** -52.74** -16.56* -48.40** -38.8** -69.95 4.49 -35.75 0 -10.60 -29.20** -18.58** 80.42** 5.30 -9.20 -57.92** -33.20** -49.81** -9.65 -40.15** -28.21** 1.92 -22.00** -36.07** -15.00 -23.75** -54.80** -44.26** -36.30** 11.26 -10.40* -40.44** -57.92 80.42 -18.61 4 -19.90* 23.71** -42.57** 51.07** -27.80** 19.93** -44.73** -31.68** -35.59** 12.35* -37.91** -2.33 -0.16 -10.77 -44.22** -15.84 12.50 -27.15** -50.19** -40.59** 0.160 -3.55 -44.60** -55.27 56.40 -10.74 7 -45.40** 64.37** -43.10** -33.33** -59.20** 40.80** -52.87** -3.45 -5.75 65.52** -22.41** 6.90 -18.97* 16.67* -40.23** -36.21** -11.49 -13.22 -50.00** -46.55** -23.56** 31.03** -42.53** -59.20 65.52 -13.06 10 -21.53** 118.66** -28.71** 31.10** -53.59** 100.00** -21.53** -22.49** -15.31* 70.33** -3.35 -15.31* -31.10** 0.96 -27.27** -39.71** 26.79** 18.18* -62.20** -57.42** -12.92 24.88** -44.98** -62.20 118.66 1.84 13 -33.09** 15.11 -60.43** -6.47 -19.42* 12.95 -19.42* 3.60 0.00 33.81** -30.94** -20.14* 17.27* 22.30* -52.52** -28.06** 2.88 -10.07 -10.79 -50.36** -9.35 -7.19 -19.42* -60.43 33.81 -13.26 5 -28.95** -6.84 -21.58** 35.79** -16.32* 19.47** -59.47** -8.95 -31.58** 23.16** -18.42** -41.05** -16.32* 2.63 -38.42** -28.42** -35.79** -40.53** -46.32** -51.05** -11.58 17.89** -42.63** -59.47 35.79 -20.25 4 -44.31** -4.19 -67.07** -22.16** -32.93** -5.99 -32.93** -13.77 -16.77* 11.38 -42.51** -33.53** -2.40 1.80 -60.48** -40.12** -14.37* -25.15** -25.75** -58.68** -24.55** -22.75** -32.93** -67.07 11.38 -27.80 0 -36.92** -17.29** -30.37** 20.56** -25.70** 6.07 -64.02** -19.16** -39.25** 9.35 -27.57** -47.66** -25.70** -8.88 -45.33** -36.45** -42.99** -47.20** -52.34** -56.54** -21.50** 4.67 -49.07** -64.02 20.56 -29.19 1 -42.84** 26.76** -46.95** -8.69 -48.47** 22.89** -48.94** -24.06** -28.40** 24.88** -30.99** -31.22** -28.76** -8.57 -48.47** -44.48** -19.72** -25.35** -53.99** -59.62** -28.52** -1.17 -48.83** -59.62 26.76 -25.33 4 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 AT-319 x G.Til-1 AT-319 x G.Til-10 AT-319 x RT-54 AT-322 x AT-285 AT-322 x G.Til-1 AT-322 x G.Til-10 AT-322 x RT-54 AT-341 x AT-285 AT-341 x G.Til-1 AT-341 x G.Til-10 AT-341 x RT-54 Bhuva-2 x AT-285 Bhuva-2 x G.Til-1 Bhuva-2 x G.Til-10 Bhuva-2 x RT-54 Khadkala-S xAT-285 Khadkala-S x GTil-1 Khadkala-S xG.Til10 Khadkala-S x RT-54 IS-209 x AT-285 IS-209 x G.Til-1 IS-209 x G.Til-10 IS-209 x RT-54 Min. Max. Mean heterosis Desirable heterosis 21.17* E1 1532 13.34 -31.60** 51.69** -36.52** 9.27 -38.34** 47.05** -38.90** -9.13 -14.33 49.44** -17.42* -17.70* -14.75 9.41 -38.34** -33.57** -3.93 -10.67 -44.94** -51.69** -14.47 18.26* -38.76** -51.69 51.69 -10.64 7 10.49 2.45 4.49 -53.43** 40.20** -51.47** -43.14** -65.20** 20.10** -59.80** -17.65** -19.61** 41.18** -33.82** -8.82 -30.88** -0.49 -49.02** -45.59** -24.51** -25.98** -57.35** -54.41** -34.80** 11.76 -50.98** -65.20 41.18 -25.85 7 -38.58** 71.16** -44.19** 2.62 -63.67** 56.55** -38.58** -39.33** -33.71** 33.33** -24.34** -33.71** -46.07** -20.97** -43.07** -52.81** -0.75 -7.49 -70.41** -66.67** -31.84** -2.25 -56.93** -70.41 71.16 -20.28 6
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.