A Handbook for the Mechanical Designer

pdf
Số trang A Handbook for the Mechanical Designer 107 Cỡ tệp A Handbook for the Mechanical Designer 507 KB Lượt tải A Handbook for the Mechanical Designer 0 Lượt đọc A Handbook for the Mechanical Designer 0
Đánh giá A Handbook for the Mechanical Designer
4.2 ( 5 lượt)
Nhấn vào bên dưới để tải tài liệu
Đang xem trước 10 trên tổng 107 trang, để tải xuống xem đầy đủ hãy nhấn vào bên trên
Chủ đề liên quan

Nội dung

A Handbook for the Mechanical Designer Second Edition Copyright 1999 This handy engineering information guide is a token of Loren Cook Company’s appreciation to the many fine mechanical designers in our industry. Springfield, MO Table of Contents Fan Basics Fan Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Fan Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Fan Laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Fan Performance Tables and Curves . . . . . . . . . . . . . . . . . . 2 Fan Testing - Laboratory, Field . . . . . . . . . . . . . . . . . . . . . . . 2 Air Density Factors for Altitude and Temperature . . . . . . . . . 3 Use of Air Density Factors - An Example . . . . . . . . . . . . . . . 3 Classifications for Spark Resistant Construction . . . . . . . .4-5 Impeller Designs - Centrifugal. . . . . . . . . . . . . . . . . . . . . . .5-6 Impeller Designs - Axial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Terminology for Centrifugal Fan Components. . . . . . . . . . . . 8 Drive Arrangements for Centrifugal Fans . . . . . . . . . . . . .9-10 Rotation & Discharge Designations for Centrifugal Fans 11-12 Motor Positions for Belt or Chain Drive Centrifugal Fans . . 13 Fan Installation Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . 14 Fan Troubleshooting Guide . . . . . . . . . . . . . . . . . . . . . . . . . 15 Motor and Drive Basics Definitions and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Types of Alternating Current Motors . . . . . . . . . . . . . . . .17-18 Motor Insulation Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Motor Service Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Locked Rotor KVA/HP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Motor Efficiency and EPAct . . . . . . . . . . . . . . . . . . . . . . . . . 20 Full Load Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21-22 General Effect of Voltage and Frequency . . . . . . . . . . . . . . 23 Allowable Ampacities of Not More Than Three Insulated Conductors . . . . . . . . . . . . . . . . . . . . . . . . .24-25 Belt Drives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Estimated Belt Drive Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Bearing Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 System Design Guidelines General Ventilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Process Ventilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Kitchen Ventilation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Rules of Thumb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31-32 Noise Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table of Contents System Design Guidelines (cont.) Sound Power and Sound Power Level. . . . . . . . . . . . . . . . . 32 Sound Pressure and Sound Pressure Level . . . . . . . . . . . . 33 Room Sones —dBA Correlation . . . . . . . . . . . . . . . . . . . . . 33 Noise Criteria Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Design Criteria for Room Loudness. . . . . . . . . . . . . . . . . 35-36 Vibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Vibration Severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-39 General Ventilation Design Air Quality Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Air Change Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Suggested Air Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Ventilation Rates for Acceptable Indoor Air Quality . . . . . . . 42 Heat Gain From Occupants of Conditioned Spaces . . . . . . 43 Heat Gain From Typical Electric Motors. . . . . . . . . . . . . . . . 44 Rate of Heat Gain Commercial Cooking Appliances in Air-Conditioned Areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Rate of Heat Gain From Miscellaneous Appliances . . . . . . 46 Filter Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Relative Size Chart of Common Air Contaminants . . . . . . . 47 Optimum Relative Humidity Ranges for Health . . . . . . . . . . 48 Duct Design Backdraft or Relief Dampers . . . . . . . . . . . . . . . . . . . . . . . . 49 Screen Pressure Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Duct Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Rectangular Equivalent of Round Ducts . . . . . . . . . . . . . . . 52 Typical Design Velocities for HVAC Components. . . . . . . . . 53 Velocity and Velocity Pressure Relationships . . . . . . . . . . . 54 U.S. Sheet Metal Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Recommended Metal Gauges for Ducts . . . . . . . . . . . . . . . 56 Wind Driven Rain Louvers . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Heating & Refrigeration Moisture and Air Relationships . . . . . . . . . . . . . . . . . . . . . . 57 Properties of Saturated Steam . . . . . . . . . . . . . . . . . . . . . . 58 Cooling Load Check Figures . . . . . . . . . . . . . . . . . . . . . . 59-60 Heat Loss Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61-62 Fuel Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Fuel Gas Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table of Contents Heating & Refrigeration (cont.) Estimated Seasonal Efficiencies of Heating Systems . . . . 63 Annual Fuel Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63-64 Pump Construction Types . . . . . . . . . . . . . . . . . . . . . . . . . 64 Pump Impeller Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Pump Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Pump Mounting Methods . . . . . . . . . . . . . . . . . . . . . . . . . 65 Affinity Laws for Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Pumping System Troubleshooting Guide . . . . . . . . . . . 67-68 Pump Terms, Abbreviations, and Conversion Factors . . . . 69 Common Pump Formulas . . . . . . . . . . . . . . . . . . . . . . . . . 70 Water Flow and Piping . . . . . . . . . . . . . . . . . . . . . . . . . 70-71 Friction Loss for Water Flow . . . . . . . . . . . . . . . . . . . . . 71-72 Equivalent Length of Pipe for Valves and Fittings . . . . . . . 73 Standard Pipe Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 74 Copper Tube Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 74 Typical Heat Transfer Coefficients . . . . . . . . . . . . . . . . . . . 75 Fouling Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Cooling Tower Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Evaporate Condenser Ratings . . . . . . . . . . . . . . . . . . . . . 78 Compressor Capacity vs. Refrigerant Temperature at 100°F Condensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Refrigerant Line Capacities for 134a . . . . . . . . . . . . . . . . . 79 Refrigerant Line Capacities for R-22 . . . . . . . . . . . . . . . . . 79 Refrigerant Line Capacities for R-502 . . . . . . . . . . . . . . . . 80 Refrigerant Line Capacities for R-717 . . . . . . . . . . . . . . . . 80 Formulas & Conversion Factors Miscellaneous Formulas . . . . . . . . . . . . . . . . . . . . . . . . 81-84 Area and Circumference of Circles . . . . . . . . . . . . . . . . 84-87 Circle Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Common Fractions of an Inch . . . . . . . . . . . . . . . . . . . . 87-88 Conversion Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88-94 Psychometric Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96-103 Fan Basics Fan Types Axial Fan - An axial fan discharges air parallel to the axis of the impeller rotation. As a general rule, axial fans are preferred for high volume, low pressure, and non-ducted systems. Axial Fan Types Propeller, Tube Axial and Vane Axial. Centrifugal Fan - Centrifugal fans discharge air perpendicular to the axis of the impeller rotation. As a general rule, centrifugal fans are preferred for higher pressure ducted systems. Centrifugal Fan Types Backward Inclined, Airfoil, Forward Curved, and Radial Tip. Fan Selection Criteria Before selecting a fan, the following information is needed. • Air volume required - CFM • System resistance - SP • Air density (Altitude and Temperature) • Type of service • Environment type • Materials/vapors to be exhausted • Operation temperature • Space limitations • Fan type • Drive type (Direct or Belt) • Noise criteria • Number of fans • Discharge • Rotation • Motor position • Expected fan life in years 1 Fan Basics Fan Laws The simplified form of the most commonly used fan laws include. • CFM varies directly with RPM CFM1/CFM2 = RPM1/RPM2 • SP varies with the square of the RPM SP1/SP2 = (RPM1/RPM2)2 • HP varies with the cube of the RPM HP1/HP2 = (RPM1/RPM2)3 Fan Performance Tables and Curves Performance tables provide a simple method of fan selection. However, it is critical to evaluate fan performance curves in the fan selection process as the margin for error is very slim when selecting a fan near the limits of tabular data. The performance curve also is a valuable tool when evaluating fan performance in the field. Fan performance tables and curves are based on standard air density of 0.075 lb/ft3. When altitude and temperature differ significantly from standard conditions (sea level and 70° F) performance modification factors must be taken into account to ensure proper performance. For further information refer to Use of Air Density Factors An Example, page 3. Fan Testing - Laboratory, Field Fans are tested and performance certified under ideal laboratory conditions. When fan performance is measured in field conditions, the difference between the ideal laboratory condition and the actual field installation must be considered. Consideration must also be given to fan inlet and discharge connections as they will dramatically affect fan performance in the field. If possible, readings must be taken in straight runs of ductwork in order to ensure validity. If this cannot be accomplished, motor amperage and fan RPM should be used along with performance curves to estimate fan performance. For further information refer to Fan Installation Guidelines, page 14. 2 Fan Basics Air Density Factors for Altitude and Temperature Altitude (ft.) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 20000 70 1.000 .964 .930 .896 .864 .832 .801 .772 .743 .714 .688 .564 .460 100 .946 .912 .880 .848 .818 .787 .758 .730 .703 .676 .651 .534 .435 200 .803 .774 .747 .720 .694 .668 .643 .620 .596 .573 .552 .453 .369 Temperature 300 400 .697 .616 .672 .594 .648 .573 .624 .552 .604 .532 .580 .513 .558 .493 .538 .476 .518 .458 .498 .440 .480 .424 .393 .347 .321 .283 500 .552 .532 .513 .495 .477 .459 .442 .426 .410 .394 .380 .311 .254 600 .500 .482 .465 .448 .432 .416 .400 .386 .372 .352 .344 .282 .230 700 .457 .441 .425 .410 .395 .380 .366 .353 .340 .326 .315 .258 .210 Use of Air Density Factors - An Example A fan is selected to deliver 7500 CFM at 1-1/2 inch SP at an altitude of 6000 feet above sea level and an operating temperature of 200° F. From the table above, Air Density Factors for Altitude and Temperature, the air density correction factor is determined to be .643 by using the fan’s operating altitude and temperature. Divide the design SP by the air density correction factor. 1.5” SP/.643 = 2.33” SP Referring to the fan’s performance rating table, it is determined that the fan must operate at 976 RPM to develop the desired 7500 CFM at 6000 foot above sea level and at an operating temperature of 200° F. The BHP (Brake Horsepower) is determined from the fan’s performance table to be 3.53. This is corrected to conditions at altitude by multiplying the BHP by the air density correction factor. 3.53 BHP x .643 = 2.27 BHP The final operating conditions are determined to be 7500 CFM, 1-1/2” SP, 976 RPM, and 2.27 BHP. 3 Fan Basics Classifications for Spark Resistant Construction† Fan applications may involve the handling of potentially explosive or flammable particles, fumes or vapors. Such applications require careful consideration of all system components to insure the safe handling of such gas streams. This AMCA Standard deals only with the fan unit installed in that system. The Standard contains guidelines which are to be used by both the manufacturer and user as a means of establishing general methods of construction. The exact method of construction and choice of alloys is the responsibility of the manufacturer; however, the customer must accept both the type and design with full recognition of the potential hazard and the degree of protection required. Construction Type A. All parts of the fan in contact with the air or gas being handled shall be made of nonferrous material. Steps must also be taken to assure that the impeller, bearings, and shaft are adequately attached and/or restrained to prevent a lateral or axial shift in these components. B. The fan shall have a nonferrous impeller and nonferrous ring about the opening through which the shaft passes. Ferrous hubs, shafts, and hardware are allowed provided construction is such that a shift of impeller or shaft will not permit two ferrous parts of the fan to rub or strike. Steps must also be taken to assure the impeller, bearings, and shaft are adequately attached and/or restrained to prevent a lateral or axial shift in these components. C. The fan shall be so constructed that a shift of the impeller or shaft will not permit two ferrous parts of the fan to rub or strike. Notes 1. No bearings, drive components or electrical devices shall be placed in the air or gas stream unless they are constructed or enclosed in such a manner that failure of that component cannot ignite the surrounding gas stream. 2. The user shall electrically ground all fan parts. 3. For this Standard, nonferrous material shall be a material with less than 5% iron or any other material with demonstrated ability to be spark resistant. †Adapted from AMCA Standard 99-401-86 4 Fan Basics Classifications for Spark Resistant Construction (cont.) 4. The use of aluminum or aluminum alloys in the presence of steel which has been allowed to rust requires special consideration. Research by the U.S. Bureau of Mines and others has shown that aluminum impellers rubbing on rusty steel may cause high intensity sparking. The use of the above Standard in no way implies a guarantee of safety for any level of spark resistance. “Spark resistant construction also does not protect against ignition of explosive gases caused by catastrophic failure or from any airstream material that may be present in a system.” Standard Applications • Centrifugal Fans • Axial and Propeller Fans • Power Roof Ventilators This standard applies to ferrous and nonferrous metals. The potential questions which may be associated with fans constructed of FRP, PVC, or any other plastic compound were not addressed. Impeller Designs - Centrifugal Airfoil - Has the highest efficiency of all of the centrifugal impeller designs with 9 to 16 blades of airfoil contour curved away from the direction of rotation. Air leaves the impeller at a velocity less than its tip speed. Relatively deep blades provide for efficient expansion with the blade passages. For the given duty, the airfoil impeller design will provide for the highest speed of the centrifugal fan designs. Applications - Primary applications include general heating systems, and ventilating and air conditioning systems. Used in larger sizes for clean air industrial applications providing significant power savings. 5 Fan Basics Impeller Designs - Centrifugal (cont.) Backward Inclined, Backward Curved - Efficiency is slightly less than that of the airfoil design. Backward inclined or backward curved blades are single thickness with 9 to 16 blades curved or inclined away from the direction of rotation. Air leaves the impeller at a velocity less than its tip speed. Relatively deep blades provide efficient expansion with the blade passages. Applications - Primary applications include general heating systems, and ventilating and air conditioning systems. Also used in some industrial applications where the airfoil blade is not acceptable because of a corrosive and/or erosive environment. Radial - Simplest of all centrifugal impellers and least efficient. Has high mechanical strength and the impeller is easily repaired. For a given point of rating, this impeller requires medium speed. Classification includes radial blades and modified radial blades), usually with 6 to 10 blades. Applications - Used primarily for material handling applications in industrial plants. Impeller can be of rugged construction and is simple to repair in the field. Impeller is sometimes coated with special material. This design also is used for high pressure industrial requirements and is not commonly found in HVAC applications. Forward Curved - Efficiency is less than airfoil and backward curved bladed impellers. Usually fabricated at low cost and of lightweight construction. Has 24 to 64 shallow blades with both the heel and tip curved forward. Air leaves the impeller at velocities greater than the impeller tip speed. Tip speed and primary energy transferred to the air is the result of high impeller velocities. For the given duty, the wheel is the smallest of all of the centrifugal types and operates most efficiently at lowest speed. Applications - Primary applications include low pressure heating, ventilating, and air conditioning applications such as domestic furnaces, central station units, and packaged air conditioning equipment from room type to roof top units. 6
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.